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Abstract 

We show that if there exists a computationally collision free function f from m bits to t bits where 
m > 1, then there exists a computationally collision free function h mapping mesaages of a&frog 
polynomial lengths to f-bit strings. 

Let n be the length of the message. h can be constructed either such that it can be evaluated 
in time linear in n using 1 processor, or such that it takes time O(log(n)) using O(n) processors, 
counting evaluations off as one step. Finally, for any constant k and large n, a speedup by a factor 
oft over the first construction is available using 1: processors. 

Apart from suggesting a generally sound design principle for hash functions, our results give a 
unified view of several apparently unrelated constructions of hash functions proposed earlier. It also 
suggests changes to other proposed constructions to make a proof of security potentially easier. 

We give three concrete examples of constructions, based on modular squaring, on Wolfram’s 
pseudoranddom bit generator [wo], and on the knapsack problem. 

1 Introduction and Related Work 

A hash function h is called collision free, if it maps messages of any length to strings of 
some fixed length, but such that finding z, y with h(s) = h(y) is a hard problem. Note 
that we are concentrating here on publicly computable hash functions, i.e. functions 
that are not controlled by a secret key. 

The need for such functions to ensure data integrity, and for use with digital 

signature schemes is well known - see for example [Da], [De], [DP]. 
Several constructions of hash functions have been proposed, based for example on 

DES [Wi], [DP] or on RSA [DP], [Girl. Th e construction in [Da] was the first for which 
collision freeness could be proved, assuming security of the atomic operation on which 
it was based - one-wayness of modular squaring in that case, and more generally, the 
existence of claw free pairs of permutations. A later example is [Gil. Unfortunately, 
this pleasant theoretical property meant a decrease in efficiency compared to other 
proposals: the time needed for these functions is roughly equivalent to applying RSA 
to the whole message. 

The problem of constructing provably collision free AND fast hash functions is 
therefore still open. 
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Many of the difficulties with giving proofs for the known constructions arise from 
the fact that things seem to get more complex as the length of the messages hashed 
increases. On the other hand, a hash function is of no use, if we are not allowed to  
hash messages of arbitrary lengths. 

In the present paper, we show that this difficulty can be removed, if the right 
construction is used: i t  turns out that ability to cut just 1 bit off the length of a 
message in a collision free way implies ability to hash messages of arbitrary lengths. 
The proof suggests a basically sound design principle which can be used as a guideline 
in designing new hash functions and in revising existing ones. 

Our construction is very similar to Merkle’s “meta-method”, discovered indepen- 
dently [Me]; in comparison, the present construction contains several extra elements 
that make a formal proof possible without any extra assumptions on the parameters 
of the functions. 

There are also similarities with the methods used in independent work by Naor 
and Yung [NaYu]. They also prove that fixed size hash functions can be composed to 
obtain compression of arbitrary polynomial length messages. This is done, both for 
our type of hash function, and for hash functions with a somewhat weaker property: 
an enemy is allowed to  choose 2, and is then given a randomly chosen instance from 
the hash function family. He can now not in polynomial time find another y such 
that f(z) = f(y). Naor and Yung construct functions of this type from any one-way 
permutation, and use them to build digital signature schemes. 

From a practical point of view, our construction is more efficient and direct. This 
is because [NaYu] in order to make their construction work for hash functions with 
the weaker property, must choose a new independent instance of the fixed length hash 
function for each message block to process. 

Finally, some very recent independent work by Impagliazzo and Naor [ M a ]  
should be mentioned. They prove that a hash function constructed from the knapsack 
problem in the same way as in Section 4.3 of this paper is secure in the sense of [NaYuJ 
if the knapsack used induces a one-way function. 

2 Preliminaries 
We first define the concept of a collision free function family: 

Definition 2.1 

A b e d  size collision free hash finction family 3 is an infinite family of finite sets 
{Fm}E=l,  and a function t : N + N, such that t(m) < m for all rn E N. 

A member of F, is a function f : (0,1}” --+ (0, l]*(m), and is called un instance 
of F of size m. 

3 must satisfy the following: 

1. There is a probabilistic polynomial (in rn) time algorithm 8 which, given a 
value of n, selects an instance of 3 of size m at random. 
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2. For any instance f E F, and 2 E (0, l}", f(z) can be computed in polynomial 

3. Given an instance f E. T selected randomly as in l), it hard to find z,y E 
(0, l}", such that f(z) = f ( y )  and z # y. 

More formally: For any probabilistic polynomial (in m) time algorithm A, and 
any polynomial P, consider the subset of instances f of size m for which A with 
probability at least l/P(m) outputs z # y such that f(z) = f(y). Let ~ ( m )  be 
the probability with which 0 selects one of these instances. Then as a function 
of rn, ~(rn) vanishes faster than any polynomial fractionfl 

Condition 1) and 2) say that 3 is useful in pratice: instances can be selected, and 

One basic implication of 3) is that functions in 3 have a sort of one-way property: 

time. 

function values computed efficiently. 3) states the collision free property. 

Lemma 2.1 

Let 3 be a collision free function family, f an instance of size m. Let Pf be the 
probability distribution on {O,l}'('") generated by selecting z randomly and uniformly 
in (0,l)"' and and outputting f(z). 

Then no algorithm inverting f on images selected according to PI succeeds with 
probability larger than 1/2 + l /P(m)  for any polynomial P 

If Pf is the uniform distribution over the image of f or if m - t is O(m) ,  then no 
inversion algorithm succeeds with probability larger than l /P(m). 

Proof 

Assume the Lemma is false. Given an algorithm A that inverts f with probability 
at least 1/2 + l / P ( n ) ,  we select z uniformly and give f(z) as input to A. If A is 
successful, we are given a y,  such that f(z) = f (y) .  Let A be the event that the 
preimage of f(z) has size at least 2. {0,1}" is at least twice as large as the image of 
f, and therefore A occurs with probability larger than 1/2. Hence, by assumption on 
A, it succeeds with probability at least l / P ( m )  when A occurs. Clearly, A's choice 
of which element in the preimage of f(z) to give us is uncorrelated to the choice of 
z (given f(z)). Hence z # y with probability at least 1/2, given that A occurs and 
that A is successful. 

For the second statement, note that if Pj is the uniform distribution, then A's 
success is uncorrelated to occurrence of A. And if m - t = O(m), then A occurs 
with overwhelming probability. In either case, A gives us a collision with probability 
essentially 1/P(rn) O 

Finally, we define the concept of a collision free hash function family: 

Definition 2.2 

A collision free hash finction family 31 is an iofinite family of finite sets {Hm}z=l, 
and a polynomially bounded function t : N -, N. 
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A member of H,,, is a function h : {0,1}’ -+ (0, 

H must satisfy the following: 

1. Given a value of m, there is a probabilistic polynomial (in m) time algorithm 

and is called an instance 
of H of size m. 

0 which on input rn selects an instance of ?l of size m at random. 

2. For any instance h E H,,, and s E {O,l}*, h ( z )  is easy to compute, i.e. com- 
putable in time polynomial both in rn and IzI. 

3. Given an instance h E 7-l selected randomly as in l), it hard to find z, y E (0, l)*, 
such that h(z )  = h(y) and z # y. 

More formally: For any probabilistic polynomial time algorithm A, and any 
polynomial P, consider the subset of instances h of size m for which A with 
probability at least 1/P(rn) outputs 2 # y such that h ( s )  = h(y). Let c(m) be 
the probability with which 8 selects one of these instances. Then as a function 
of rn, ~ ( m )  vanishes faster than any polynomial fraction0 

Note that the essential difference between Definition 2.1 and 2.2 is that in 2.2, 
we do not place any restrictions on the lengths of the inputs to the functions, other 
than what follows from the obvious fact that polynomial time algorithms cannot hash 
messages of superpolynomial length. 

3 Basic Constructions 
The main result in this section is that collision free hash function families can be 
constructed from fixed size collision free hash function families: 

Theorem 3.1 

Let F be a fixed size collision free hash function family mapping rn bits to t(m) bits. 
Then there exists a collision free hash function family ‘H mapping strings of arbitrary 
length to t(m)-bit strings. 

Let h be an instance in ‘H of size m Then evaluating h on input of length n can 
be done in at most n/(m - t(m) + 1) + 1 steps using 1 processor (we count evaluation 
of functions in F as 1 step). 

Proof 

For each instance f E 3 of size n, we will construct an instance h E ‘Ff of size rn. 
Put t = t (m) .  For bit strings a,  b, we let allb denote the concatenation of a and b. 

The constructicn will be divided into two cases: first we will discuss the case 
where rn - t > 1, and take the rn - t = 1 case later. 

We describe how to compute the value of h on input z E {O,l}*: 
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Split x in blocks of size m - t - 1 bits. If the last block is incomplete, it is 
padded with 0's. Let d be the number of 0's needed. Let the blocks be denoted by 
~ 1 , ~ 2 ,  ...,z,/I,-:-~), where n = 1.1 (the length after padding). 

We append to this sequence one extra m - t - 1-bit block x,,/(,,,-:-1)+1, which 
contains the binary representation of d ,  prefixed with an appropriate number of 0's. 

Then define a sequence of t bit blocks ho, hl,  ... by: 

hi+l = f ( h i  I I1 I I.;+I> 
Finally, put h(+) = hn/(m-t)+l .  

Checking that 31 satisfies condition 1 and 2 in Definition 2.2 is easy. For condition 
3, assume for contradiction that we are given an algorithm A which finds 2 # x' such 
that h(z )  = h(z'). 

Let hi, 3; (resp. h:, x:) be the intermediate results in the computation of h(s) 
(resp. h(z')). 

If 1x1 # 12'1 mod ( m  - t ) ,  then certainly zn/(m-t)+l # ~ h ~ / ( ~ - ~ ) + ~ ,  so that h ( z )  = 
h(z') gives us immediately a collision for f. So we may now assume that 1.1 = 
12'1 mod (rn - t )  and without loss of generality that 12'1 2 121. 

Consider now the equation 

and repeat the argument. Clearly this process must stop either by creating a collision 
for f, or (since x # 5') by establishing the equation 

which is clearly impossible. 
Summarizing, we have now a reduction that transforms A into an algorithm that 

finds a collision for f. Suppose A takes at most T(m)  bit operations. Then z and a? 
must be of length less than T(rn). 

Therefore the whole reduction takes time O(T(m)F(rn)), where F(m)  is the time 
needed to compute 1 f-value, in particular if T is a polynomial, then the whole 
reduction is in polynomial time. This finally establishes a contradiction with condition 
3 in Definition 2.1 

Finally, we discuss the case where rn - t = 1. An easy, but not very efficient 
solution is prefix-free encode all messages before they are hashed, and then use a 
construction similar to the above, changing the definition of the h's to: 

hl = f(0'll.l) 
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hi+i = f ( h i I l X i t 1 )  

Here, of course the z;’s are 1-bit blocks. This can be proved secure in much the same 
way as above. 

If f satisfies the second condition in Lemma 2.1, there is a more efficient solution: 
we choose a t bit string yo uniformly, and define 

hl = f(Y0114 

hi+l = f(hillxi+*) 

this time without doing the prefix free encoding of 5. The argument from above will 
now show that a collison for h will either give us a collision for f or a preimage of yo. 
But then we are done by Lemma 2.1. II] 

Remarks 

0 The last version of the construction using Lemma 2.1 will not only work when 
rn - t = 1, but wi l l  work whenever Pf is (close to) the uniform distribution, 
or rn - t = O(rn). This should be noted because this version allows hashing of 
1 bit more per application of f than the general construction, and is therefore 
slightly more efficient. 

0 The trick in the proof above of appending an extra block to the message is only 
necessary to ensure that we can recognize the difference between messages that 
need to be padded with d O’s, and messages that simply end with d 0’s before 
padding. In many applications, it is perfectly acceptable that trailing 0’s in 
the last block are ignored, in which case this part of the construction can be 
skipped. 

Let us look at the connection between Theorem 3.1 and previously known hash 
functions. In [Da], hash functions are constructed based on claw-free pairs of per- 
mutations, i.e. pairs of permutations (fo,fi) with the same domain D ,  for which 
finding z # y such that f ~ ( z )  = f i (y)  is a hard problem. We can construct an in- 
stance in a collision free function family from the pair (fo, fl) by defining a function 
f : D x (0 , l )  + D by: 

for x E D and b E (0 , l ) .  Using Theorem 3.1 on the function family thus defined will 
yield exactly the haahfunctions presented in [Da], except that we have removed the 
need for the prefix free encoding of messages used there (Pi is uniform in this case). 

As a second example, consider one of the first ideas for constructing a hash function 
from a conventional cipher, due originally to Rabin: Let E be an encryption algorithm 
that encrypts message-s of size t bits, using a key of size k bits. Put rn = t + k. We 
split the message x in blocks of size k bits x l ,  x2, ..., x,. We then choose a fixed t bit 
block ho at random and let h;+l = Ezi+l(h;). h ( z )  is defined to be It,+*. 

f(+) = f b b )  
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This fits into the framework of Theorem 3.1 by letting f ( a ,  b) = E,(b) for a t-bit 
block b and k-bit block a. Unfortunately, this f is NOT collision free: enciphering 
any message with an arbitrary key and deciphering with a diferent key will yield 
a collision for f with high probability. This does not necessarily mean that the 
function is weak. It does mean, however, that a proof of security cannot be based 
only on properties off  itself, but must depend on the global structure of the function. 

For concrete examples of f, weaknesses have been found, however: if DES is used 
as E ,  such that t is only 64, it is well known that the function h constructed as above, 
permits an enemy which is given z and h(z )  to find a y # z such that A(z) = h(y), 
using the ‘birthday patadox”. This is in fact a stronger statement than saying that 
the hash function is not collision free. 

Within ISO, it is currently proposed to standardize a modification of this scheme, 
where f is defined as f ( a , b )  = E,(b) @ b. For this version of f ,  there is in fact hope 
that we can use Theorem 3.1 to prove collision freeness of the entire function by 
looking only at f: Given c, it is not easy to solve f ( a , b )  = c for a and b, if E is a 
strong encryption algorithm, and thus there good reason to believe that this version 
of f is collision free. 

3.1 Parallellking Hash Functions 
Based on Theorem 3.1, we can give alternative constructions that allow computation 
in parallel of a hashvalue: 

Theorem 3.2 

Let 3 be a collision free function family mapping m bits to t ( n )  bits. Then there 
exists a collision free hash function family ‘FI mapping arbitrary strings to t(m)-bit 
strings with the following property: 

Let h be an instance in X of size m. Put t = t(m). Then evaluating h on input of 
length n can be done in O(logz(n/t)t/(m - t ) )  steps using n/2t processors (we count 
evaluation of functions in 7 as 1 step). 

Proof 

We are given an instance f E 3 of size m. By Theorem 3.1, we can construct a hash 
function h’, which maps 2t bits to t bits in t / ( m  - t )  steps. Note, that since the 
length of the input is fixed, we do not need to append an extra input block in the 
construction of h’. 

We then construct an instance h E 3-t as follows: 
Let a message z of length n be given. We pad I with a number of 0’9, such that the 

resulting bit string zo has length equal to 2Jt for some j. Now construct a sequence 
zo,zi, .-.,zj by defining =;+I in terms of 2;: split I ;  in blocks of length 2t ,  apply h’ 
to each block and concatenate the results to obtain zi+l* 

The sequence stops at z,, which has length t .  We then hash the binary represen- 
tation of the length n of z using Theorem 3.1 to obtain a t bit block len,. Finally we 
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Put 
h( z) = h'( zj I I len,). 

The statements on the time and processors needed to compute h are trivial to 
verify. 

As for collision freeness, suppose we could produce z # d with h(s) = h ( d )  in 
expected polynomial time. 

If z$,Illen,j # zjlllen,, we have a collision for h', contradicting Theorem 3.1. 
Hence we may also amume that n = n', since otherwise len i  = len, would imply a 
collision. 

Now, s # 5' implies that we may choose an i such that zi # I:, but 2i+l = z:+~. 
This clearly implies a collision for h'a 

Finally, it is also easy to see how to make a construction that allows c processors 
to cooperate in computing a hashvalue, acheiving a speed up by a factor of c for long 
messages. Loosely speaking, we split the message in c parts of roughly the same size, 
hash each part in parallel using Theorem 3.1, and finally hash the c output blocks 
using Theorem 3.1 once again. Formalizing this and proving collision freeness is left 
to the reader. 

4 Concrete Constructions 
In the following we propose three concrete constructions of collision free functions 
with fixed inputsize. These functions can then be turned into hashfunctions by a 
straightforward application of Theorem 3.1. 

4.1 Based on Modular Squaring 
We give first a construction based on the hardness of extracting square roots modulo 
large numbers with two prime factors. The construction bears some similarities with 
the functions considered in [Girl, but is fundamentally different in that the functions 
from [Girl do not allow for application of Theorem 3.1. 

Let n = pq,  where p and p are large primes. Let the length of n be s bits. For 
concreteness, one can think of s = 512. Next, choose I ,  a proper subset of the numbers 
1,2, ..., s. For any s-bit string y = y1,y2, ..., yd, let f~(y) be the concatenation of all 
yj for which j E I. 

Finally, we can define our candidate collision free function f from m bits to  t bits 
by setting m = s - 8, t = 111, and defining 

where 3 F l z  denotes the concatenation of the byte 3 F  (in hex) and z. This concate- 
nation implies that all inputs to the modular squaring are less than n / 2 ,  but large 
enough to guarantee that modular reductions always take place. We therefore prevent 
trivial collisions implied by z2 = ( - z ) ~  mod n, and also attempts to find collisions 
by choosing for example small 2-powers as input. 
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We also need to specify choices of I that will make f secure and efficient. The 
problem of finding a collision for f can be reformulated: find numbers z # y, such 
that their squares modulo n match at the positions designated by I .  Girault [Girl 
shows how to do this if I designates a reasonably small (less than 64) number of the 
least significant, or the most significant bits. 

This suggests that we should choose the positions to be spread evenly over the 
s possible ones, since Girault’s method and related ones [GTV] will then fail. On 
the other hand there are good practical reasons for not using completely random 
positions, but at least lumping them together in bytes. Moreover, 111 should not be 
chosen too small, to prevent “birthday collisions”. 

To be concrete, if s = 512, the above suggests that good choices would be 111 = 
128, and letting fr extract every 4’th byte. 

This function will hash up to 376 bits pr. modular squaring, which on for example 
an IBM P/S I1 model 80 will give a speed of about 100 Kbits/sec. Special purpose 
hardware will give speeds in the Mbit/sec area. 

4.2 Based on Wolfram’s Pseudorandom Bit Generator 
The second suggestion bases itself on the pseudorandom bit generator proposed by 
Wolfram [Wo]. In general, a pseudorandom bit generator is an algorithm that takes 
as input a short, truely random seed, and stretches this into a long, seemingly ran- 
dom output string. It is intuitively clear that such a generator must in some sense 
implement a one-way function from its seed to its output: if the seed was easy to find 
given some part of the output, then the whole output could be predicted and hence 
be recognized as being non-random. 

However, this one-way property does NOT in general imply collision freeness of a 
function constructed directly from the generator - an analysis of the concrete instance 
is therefore very much required. 

Let us therefore have a look at the algorithm suggested by Wolfram: We define a 
function g from n bit strings to n bit strings: let x = xo, 22, ..., x,,-~, then the i’th bit 
of g(x) is 

where addition and subtraction of 1 are modulo n. One can think of this as a register 
R in which the bits are updated in parallel by setting R := g(R).  This is known as a 
one-dimensional cellular automat. 

g(5)i = zi-1@ (z; V x i + * ) ,  

To use this for pseudorandom bit generation, one does the following: 

1. Choose z at random. 

2. z:=g(z). 

3. Output 5 0 .  GO to 2. 

In [Wo], this pseudorandom bitgenerator is analyzed, and results of a large number 
of statistical tests are given. Its security is proved against enemies restricted to 
certain types of computations, but its ability to fail arbitrary polynomial time enemies 
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remains a conjecture. All the known evidence, however, indicates that the generator 
is in fact very strong. 

Let the bits produced by the algorithm on input z be denoted by h(z), h(z), .... 
The natural way to use this to construct a collision free function is to choose two 

natural numbers c < d,  and let a function fo be defined by 

fO(z) = b c ( z ) ,  bc+1(5), * - - Y  b d ( Z ) .  

There are two possible flaws in this idea, which must be taken care of 
First, a natural demand to a function like this is that all output bits depend on 

all input bits. It is easy to see that changing 1 bit of z will eventually after many 
executions of z := g(z) affect all of z - but the effect only propagates slowly through 
the register: 1 bit to the right, and about .25 bit to the left pr. application of g No]. 
Hence choosing c too small will clearly be dangerous. A natural minimum value of c 
would therefore be one that guaranties that all output bits depend on all input bits. 

The second problem is that g itself is not collision free: for example, g(1”) = 
g(0”) = On. And clearly, g(z) = g(y) implies fo(z) = fo(y). More generally, if 
g”(5) = g”(y) for small tl, then there is at least a nonnegligible chance that fo(z) = 
fo(Y)* 

One natural way to get rid of this difficulty is to restrict f to a subset of the n-bit 
strings, thereby lowering the chance that pairs 3, y of the above form exist, or at least 
making them harder to find. One concrete possibility is to restrict to strings of the 
form zllz, where z is a randomly chosen constant string in (0, l)‘, r < n. 

Thus we will define our final candidate f so that it maps an n - r bit string z to  

The following lemma provides evidence in favor of this approach: 

Lemma 5.1 

If g”(z) = g”(y) = z,  and 2v consecutive bits of z and y are equal, then I = y. 

Proof 

Let j be the index of the position immediately to the right of the 2v bits we know to 
be equal. Each bit of t depends on at most 2v + 1 bits of z(or y). Let I be chosen such 
that ZI is a function of bits j, ...,j + 2v of z(or y). Now, since inverting zj will invert 
21, our assumptions imply that xj = yj. We can now “slide” the same argument one 
position to the right0 

This provides good evidence that choosing a relatively large r will make “trivial” 
collisions more sparse and harder to find. 

As a concrete example, suppose we choose n = 512, r = 256, c = 257 and 
d = 384. The resulting f will map 256-bit strings to 128-bit strings, and thus the 
hash function constructed from f by Theorem 3.1 will hash messages in blocks of 128 
bits, and produce 128 bit outputs. 



426 

This function will be extremely well suited for a hardware implementation: in 
VLSI, we can compute g by updating all bits in parallel, and thus one application of 
g would only take 1 or 2 clock cycles, independently of n. This will produce speeds in 
the Mbit/sec area even with quite modest clock speeds. Moreover such a hardware 
implementation would be extremely easy and cheap to build. 

4.3 

Although the knapsack problem is NP-complete, and therefore probably very hard in 
the worst cases, making use of this hardness in cryptography is not easy, as shown by 
the fate of many public-key systems based on this problem. 

The difficulty, however, is largely due to the fact that an encryption function 
must be invertible, and that the knapsacks used must therefore have some built-in 
structures, which in many cases turn out to be useful to a cryptanalyst. A hash func- 
tion, on the other hand, never has to be inverted, and therefore completely randomly 
generated knapsacks can be used. 

The naive way of doing this is to choose at random numbers al ,  ..., a,  in the interval 
1..M, where s is the maximal length of a message to be expected. We can then hash 
the binary message rnl, rnz,  ..., rnb to 

Based on the Knapsack Problem 

. 
As shown in [GC], this is completely insecure for large s, more precisely when 

M C - To solve this, we propose to fix s to something reasonably small 
compared to M ,  and use Theorem 3.1 to construct the actual hash function. As an 
example, one could choose s to be about 2Zog(M), which implies that f compresses 
s bits blocks to 9/2 bit blocks, and that the condition of [GC] is very far from being 
satisfied. 

Concrete choices could be 8 = 256 and M = 2lZ0 - 1. This would give an output 
from the final hash function of length 128 bits. On an IBM P/S I1 Model 80, this 
version will run at  a speed of about 250 Kbits/sec. 

To specify the function one needs to specify about 4 Kbytes of data. On e.g. a PC 
with 640K of RAM, this does not seem excessive. But in situations with a smaller 
memory, one can trade time for memory and generate the a’s pseudorandomly in 
stead of remembering all of them. 

The result of [ImNa] is a strong indication that this function is indeed collision 
free, although the security property proved is weaker than what we need here (see 
Section 1). 

Another indication of the strength of the function is the fact that the problem of 
deciding in general whether a given knapsack induces an injective mapping is co-NP 
complete. A collision is of course a witness of non- injectiveness (the decision problem 
is clearly trivial if the knapsack compresses its input, but this does not imply that a 
witness is easy to find). 

We remark that even knapsacks that expand their input slightly (and therefore 
cannot be used by (ImNa]) can be used to build hash functions secure in the sense 
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of [NaYu], if one is willing to assume that they induce collision free mappings. This 
seems reasonable in view of the co-NP completeness of the problem involved and the 
fact that the decision problem is non trivial in this case. The construction and proof 
can be obtained by adapting the techniques of [NaYu]. 
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