
A Design Principle for Hash Functions

Ivan Bjerre Damghdl

Abstract

We show that if there exists a computationally collision free function f from m bits to t bits where
m > 1, then there exists a computationally collision free function h mapping mesaages of a&frog
polynomial lengths to f-bit strings.

Let n be the length of the message. h can be constructed either such that it can be evaluated
in time linear in n using 1 processor, or such that it takes time O(log(n)) using O(n) processors,
counting evaluations off as one step. Finally, for any constant k and large n, a speedup by a factor
oft over the first construction is available using 1: processors.

Apart from suggesting a generally sound design principle for hash functions, our results give a
unified view of several apparently unrelated constructions of hash functions proposed earlier. It also
suggests changes to other proposed constructions to make a proof of security potentially easier.

We give three concrete examples of constructions, based on modular squaring, on Wolfram’s
pseudoranddom bit generator [wo], and on the knapsack problem.

1 Introduction and Related Work

A hash function h is called collision free, if it maps messages of any length to strings of
some fixed length, but such that finding z, y with h(s) = h(y) is a hard problem. Note
that we are concentrating here on publicly computable hash functions, i.e. functions
that are not controlled by a secret key.

The need for such functions to ensure data integrity, and for use with digital

signature schemes is well known - see for example [Da], [De], [DP].
Several constructions of hash functions have been proposed, based for example on

DES [Wi], [DP] or on RSA [DP], [Girl. Th e construction in [Da] was the first for which
collision freeness could be proved, assuming security of the atomic operation on which
it was based - one-wayness of modular squaring in that case, and more generally, the
existence of claw free pairs of permutations. A later example is [Gil. Unfortunately,
this pleasant theoretical property meant a decrease in efficiency compared to other
proposals: the time needed for these functions is roughly equivalent to applying RSA
to the whole message.

The problem of constructing provably collision free AND fast hash functions is
therefore still open.

‘The author ia with Mathematical Institute, Aarhus University, Ny Munkegade, DK 8000 Aarhus
C, Denmark.

G. Brassard (Ed.): Advances in Cryptology - CRYPT0 ‘89, LNCS 435, pp. 416-427, 1990.
0 Springer-Verlag Berlin Heidelberg 1990

41 7

Many of the difficulties with giving proofs for the known constructions arise from
the fact that things seem to get more complex as the length of the messages hashed
increases. On the other hand, a hash function is of no use, if we are not allowed to
hash messages of arbitrary lengths.

In the present paper, we show that this difficulty can be removed, if the right
construction is used: i t turns out that ability to cut just 1 bit off the length of a
message in a collision free way implies ability to hash messages of arbitrary lengths.
The proof suggests a basically sound design principle which can be used as a guideline
in designing new hash functions and in revising existing ones.

Our construction is very similar to Merkle’s “meta-method”, discovered indepen-
dently [Me]; in comparison, the present construction contains several extra elements
that make a formal proof possible without any extra assumptions on the parameters
of the functions.

There are also similarities with the methods used in independent work by Naor
and Yung [NaYu]. They also prove that fixed size hash functions can be composed to
obtain compression of arbitrary polynomial length messages. This is done, both for
our type of hash function, and for hash functions with a somewhat weaker property:
an enemy is allowed to choose 2, and is then given a randomly chosen instance from
the hash function family. He can now not in polynomial time find another y such
that f(z) = f(y). Naor and Yung construct functions of this type from any one-way
permutation, and use them to build digital signature schemes.

From a practical point of view, our construction is more efficient and direct. This
is because [NaYu] in order to make their construction work for hash functions with
the weaker property, must choose a new independent instance of the fixed length hash
function for each message block to process.

Finally, some very recent independent work by Impagliazzo and Naor [M a]
should be mentioned. They prove that a hash function constructed from the knapsack
problem in the same way as in Section 4.3 of this paper is secure in the sense of [NaYuJ
if the knapsack used induces a one-way function.

2 Preliminaries
We first define the concept of a collision free function family:

Definition 2.1

A b e d size collision free hash finction family 3 is an infinite family of finite sets
{Fm}E=l, and a function t : N + N, such that t(m) < m for all rn E N.

A member of F, is a function f : (0,1}” --+ (0, l]*(m), and is called un instance
of F of size m.

3 must satisfy the following:

1. There is a probabilistic polynomial (in rn) time algorithm 8 which, given a
value of n, selects an instance of 3 of size m at random.

41 a

2. For any instance f E F, and 2 E (0, l}", f(z) can be computed in polynomial

3. Given an instance f E. T selected randomly as in l), it hard to find z,y E
(0, l}", such that f(z) = f (y) and z # y.

More formally: For any probabilistic polynomial (in m) time algorithm A, and
any polynomial P, consider the subset of instances f of size m for which A with
probability at least l/P(m) outputs z # y such that f(z) = f(y). Let ~ (m) be
the probability with which 0 selects one of these instances. Then as a function
of rn, ~(rn) vanishes faster than any polynomial fractionfl

Condition 1) and 2) say that 3 is useful in pratice: instances can be selected, and

One basic implication of 3) is that functions in 3 have a sort of one-way property:

time.

function values computed efficiently. 3) states the collision free property.

Lemma 2.1

Let 3 be a collision free function family, f an instance of size m. Let Pf be the
probability distribution on {O,l}'('") generated by selecting z randomly and uniformly
in (0,l)"' and and outputting f(z).

Then no algorithm inverting f on images selected according to PI succeeds with
probability larger than 1/2 + l /P(m) for any polynomial P

If Pf is the uniform distribution over the image of f or if m - t is O(m) , then no
inversion algorithm succeeds with probability larger than l /P(m).

Proof

Assume the Lemma is false. Given an algorithm A that inverts f with probability
at least 1/2 + l / P (n) , we select z uniformly and give f(z) as input to A. If A is
successful, we are given a y, such that f(z) = f (y) . Let A be the event that the
preimage of f(z) has size at least 2. {0,1}" is at least twice as large as the image of
f, and therefore A occurs with probability larger than 1/2. Hence, by assumption on
A, it succeeds with probability at least l / P (m) when A occurs. Clearly, A's choice
of which element in the preimage of f(z) to give us is uncorrelated to the choice of
z (given f(z)). Hence z # y with probability at least 1/2, given that A occurs and
that A is successful.

For the second statement, note that if Pj is the uniform distribution, then A's
success is uncorrelated to occurrence of A. And if m - t = O(m), then A occurs
with overwhelming probability. In either case, A gives us a collision with probability
essentially 1/P(rn) O

Finally, we define the concept of a collision free hash function family:

Definition 2.2

A collision free hash finction family 31 is an iofinite family of finite sets {Hm}z=l,
and a polynomially bounded function t : N -, N.

41 9

A member of H,,, is a function h : {0,1}’ -+ (0,

H must satisfy the following:

1. Given a value of m, there is a probabilistic polynomial (in m) time algorithm

and is called an instance
of H of size m.

0 which on input rn selects an instance of ?l of size m at random.

2. For any instance h E H,,, and s E {O,l}*, h (z) is easy to compute, i.e. com-
putable in time polynomial both in rn and IzI.

3. Given an instance h E 7-l selected randomly as in l), it hard to find z, y E (0, l)*,
such that h(z) = h(y) and z # y.

More formally: For any probabilistic polynomial time algorithm A, and any
polynomial P, consider the subset of instances h of size m for which A with
probability at least 1/P(rn) outputs 2 # y such that h (s) = h(y). Let c(m) be
the probability with which 8 selects one of these instances. Then as a function
of rn, ~ (m) vanishes faster than any polynomial fraction0

Note that the essential difference between Definition 2.1 and 2.2 is that in 2.2,
we do not place any restrictions on the lengths of the inputs to the functions, other
than what follows from the obvious fact that polynomial time algorithms cannot hash
messages of superpolynomial length.

3 Basic Constructions
The main result in this section is that collision free hash function families can be
constructed from fixed size collision free hash function families:

Theorem 3.1

Let F be a fixed size collision free hash function family mapping rn bits to t(m) bits.
Then there exists a collision free hash function family ‘H mapping strings of arbitrary
length to t(m)-bit strings.

Let h be an instance in ‘H of size m Then evaluating h on input of length n can
be done in at most n/(m - t(m) + 1) + 1 steps using 1 processor (we count evaluation
of functions in F as 1 step).

Proof

For each instance f E 3 of size n, we will construct an instance h E ‘Ff of size rn.
Put t = t (m) . For bit strings a, b, we let allb denote the concatenation of a and b.

The constructicn will be divided into two cases: first we will discuss the case
where rn - t > 1, and take the rn - t = 1 case later.

We describe how to compute the value of h on input z E {O,l}*:

420

Split x in blocks of size m - t - 1 bits. If the last block is incomplete, it is
padded with 0's. Let d be the number of 0's needed. Let the blocks be denoted by
~ 1 , ~ 2 , ...,z,/I,-:-~), where n = 1.1 (the length after padding).

We append to this sequence one extra m - t - 1-bit block x,,/(,,,-:-1)+1, which
contains the binary representation of d , prefixed with an appropriate number of 0's.

Then define a sequence of t bit blocks ho, hl, ... by:

hi+l = f (h i I I1 I I.;+I>
Finally, put h(+) = hn/(m-t)+l .

Checking that 31 satisfies condition 1 and 2 in Definition 2.2 is easy. For condition
3, assume for contradiction that we are given an algorithm A which finds 2 # x' such
that h(z) = h(z').

Let hi, 3; (resp. h:, x:) be the intermediate results in the computation of h(s)
(resp. h(z')).

If 1x1 # 12'1 mod (m - t) , then certainly zn/(m-t)+l # ~ h ~ / (~ - ~) + ~ , so that h (z) =
h(z') gives us immediately a collision for f. So we may now assume that 1.1 =
12'1 mod (rn - t) and without loss of generality that 12'1 2 121.

Consider now the equation

and repeat the argument. Clearly this process must stop either by creating a collision
for f, or (since x # 5') by establishing the equation

which is clearly impossible.
Summarizing, we have now a reduction that transforms A into an algorithm that

finds a collision for f. Suppose A takes at most T(m) bit operations. Then z and a?
must be of length less than T(rn).

Therefore the whole reduction takes time O(T(m)F(rn)), where F(m) is the time
needed to compute 1 f-value, in particular if T is a polynomial, then the whole
reduction is in polynomial time. This finally establishes a contradiction with condition
3 in Definition 2.1

Finally, we discuss the case where rn - t = 1. An easy, but not very efficient
solution is prefix-free encode all messages before they are hashed, and then use a
construction similar to the above, changing the definition of the h's to:

hl = f(0'll.l)

42 1

hi+i = f (h i I l X i t 1)

Here, of course the z;’s are 1-bit blocks. This can be proved secure in much the same
way as above.

If f satisfies the second condition in Lemma 2.1, there is a more efficient solution:
we choose a t bit string yo uniformly, and define

hl = f(Y0114

hi+l = f(hillxi+*)

this time without doing the prefix free encoding of 5. The argument from above will
now show that a collison for h will either give us a collision for f or a preimage of yo.
But then we are done by Lemma 2.1. II]

Remarks

0 The last version of the construction using Lemma 2.1 will not only work when
rn - t = 1, but wi l l work whenever Pf is (close to) the uniform distribution,
or rn - t = O(rn). This should be noted because this version allows hashing of
1 bit more per application of f than the general construction, and is therefore
slightly more efficient.

0 The trick in the proof above of appending an extra block to the message is only
necessary to ensure that we can recognize the difference between messages that
need to be padded with d O’s, and messages that simply end with d 0’s before
padding. In many applications, it is perfectly acceptable that trailing 0’s in
the last block are ignored, in which case this part of the construction can be
skipped.

Let us look at the connection between Theorem 3.1 and previously known hash
functions. In [Da], hash functions are constructed based on claw-free pairs of per-
mutations, i.e. pairs of permutations (fo,fi) with the same domain D , for which
finding z # y such that f ~ (z) = f i (y) is a hard problem. We can construct an in-
stance in a collision free function family from the pair (fo, fl) by defining a function
f : D x (0 , l) + D by:

for x E D and b E (0 , l) . Using Theorem 3.1 on the function family thus defined will
yield exactly the haahfunctions presented in [Da], except that we have removed the
need for the prefix free encoding of messages used there (Pi is uniform in this case).

As a second example, consider one of the first ideas for constructing a hash function
from a conventional cipher, due originally to Rabin: Let E be an encryption algorithm
that encrypts message-s of size t bits, using a key of size k bits. Put rn = t + k. We
split the message x in blocks of size k bits x l , x2, ..., x,. We then choose a fixed t bit
block ho at random and let h;+l = Ezi+l(h;). h (z) is defined to be It,+*.

f(+) = f b b)

422

This fits into the framework of Theorem 3.1 by letting f (a , b) = E,(b) for a t-bit
block b and k-bit block a. Unfortunately, this f is NOT collision free: enciphering
any message with an arbitrary key and deciphering with a diferent key will yield
a collision for f with high probability. This does not necessarily mean that the
function is weak. It does mean, however, that a proof of security cannot be based
only on properties off itself, but must depend on the global structure of the function.

For concrete examples of f, weaknesses have been found, however: if DES is used
as E , such that t is only 64, it is well known that the function h constructed as above,
permits an enemy which is given z and h(z) to find a y # z such that A(z) = h(y),
using the ‘birthday patadox”. This is in fact a stronger statement than saying that
the hash function is not collision free.

Within ISO, it is currently proposed to standardize a modification of this scheme,
where f is defined as f (a , b) = E,(b) @ b. For this version of f , there is in fact hope
that we can use Theorem 3.1 to prove collision freeness of the entire function by
looking only at f: Given c, it is not easy to solve f (a , b) = c for a and b, if E is a
strong encryption algorithm, and thus there good reason to believe that this version
of f is collision free.

3.1 Parallellking Hash Functions
Based on Theorem 3.1, we can give alternative constructions that allow computation
in parallel of a hashvalue:

Theorem 3.2

Let 3 be a collision free function family mapping m bits to t (n) bits. Then there
exists a collision free hash function family ‘FI mapping arbitrary strings to t(m)-bit
strings with the following property:

Let h be an instance in X of size m. Put t = t(m). Then evaluating h on input of
length n can be done in O(logz(n/t)t/(m - t)) steps using n/2t processors (we count
evaluation of functions in 7 as 1 step).

Proof

We are given an instance f E 3 of size m. By Theorem 3.1, we can construct a hash
function h’, which maps 2t bits to t bits in t / (m - t) steps. Note, that since the
length of the input is fixed, we do not need to append an extra input block in the
construction of h’.

We then construct an instance h E 3-t as follows:
Let a message z of length n be given. We pad I with a number of 0’9, such that the

resulting bit string zo has length equal to 2Jt for some j. Now construct a sequence
zo,zi, .-.,zj by defining =;+I in terms of 2;: split I ; in blocks of length 2t , apply h’
to each block and concatenate the results to obtain zi+l*

The sequence stops at z,, which has length t . We then hash the binary represen-
tation of the length n of z using Theorem 3.1 to obtain a t bit block len,. Finally we

423

Put
h(z) = h'(zj I I len,).

The statements on the time and processors needed to compute h are trivial to
verify.

As for collision freeness, suppose we could produce z # d with h(s) = h (d) in
expected polynomial time.

If z$,Illen,j # zjlllen,, we have a collision for h', contradicting Theorem 3.1.
Hence we may also amume that n = n', since otherwise len i = len, would imply a
collision.

Now, s # 5' implies that we may choose an i such that zi # I:, but 2i+l = z:+~.
This clearly implies a collision for h'a

Finally, it is also easy to see how to make a construction that allows c processors
to cooperate in computing a hashvalue, acheiving a speed up by a factor of c for long
messages. Loosely speaking, we split the message in c parts of roughly the same size,
hash each part in parallel using Theorem 3.1, and finally hash the c output blocks
using Theorem 3.1 once again. Formalizing this and proving collision freeness is left
to the reader.

4 Concrete Constructions
In the following we propose three concrete constructions of collision free functions
with fixed inputsize. These functions can then be turned into hashfunctions by a
straightforward application of Theorem 3.1.

4.1 Based on Modular Squaring
We give first a construction based on the hardness of extracting square roots modulo
large numbers with two prime factors. The construction bears some similarities with
the functions considered in [Girl, but is fundamentally different in that the functions
from [Girl do not allow for application of Theorem 3.1.

Let n = pq, where p and p are large primes. Let the length of n be s bits. For
concreteness, one can think of s = 512. Next, choose I , a proper subset of the numbers
1,2, ..., s. For any s-bit string y = y1,y2, ..., yd, let f~(y) be the concatenation of all
yj for which j E I.

Finally, we can define our candidate collision free function f from m bits to t bits
by setting m = s - 8, t = 111, and defining

where 3 F l z denotes the concatenation of the byte 3 F (in hex) and z. This concate-
nation implies that all inputs to the modular squaring are less than n / 2 , but large
enough to guarantee that modular reductions always take place. We therefore prevent
trivial collisions implied by z2 = (- z) ~ mod n, and also attempts to find collisions
by choosing for example small 2-powers as input.

424

We also need to specify choices of I that will make f secure and efficient. The
problem of finding a collision for f can be reformulated: find numbers z # y, such
that their squares modulo n match at the positions designated by I . Girault [Girl
shows how to do this if I designates a reasonably small (less than 64) number of the
least significant, or the most significant bits.

This suggests that we should choose the positions to be spread evenly over the
s possible ones, since Girault’s method and related ones [GTV] will then fail. On
the other hand there are good practical reasons for not using completely random
positions, but at least lumping them together in bytes. Moreover, 111 should not be
chosen too small, to prevent “birthday collisions”.

To be concrete, if s = 512, the above suggests that good choices would be 111 =
128, and letting fr extract every 4’th byte.

This function will hash up to 376 bits pr. modular squaring, which on for example
an IBM P/S I1 model 80 will give a speed of about 100 Kbits/sec. Special purpose
hardware will give speeds in the Mbit/sec area.

4.2 Based on Wolfram’s Pseudorandom Bit Generator
The second suggestion bases itself on the pseudorandom bit generator proposed by
Wolfram [Wo]. In general, a pseudorandom bit generator is an algorithm that takes
as input a short, truely random seed, and stretches this into a long, seemingly ran-
dom output string. It is intuitively clear that such a generator must in some sense
implement a one-way function from its seed to its output: if the seed was easy to find
given some part of the output, then the whole output could be predicted and hence
be recognized as being non-random.

However, this one-way property does NOT in general imply collision freeness of a
function constructed directly from the generator - an analysis of the concrete instance
is therefore very much required.

Let us therefore have a look at the algorithm suggested by Wolfram: We define a
function g from n bit strings to n bit strings: let x = xo, 22, ..., x,,-~, then the i’th bit
of g(x) is

where addition and subtraction of 1 are modulo n. One can think of this as a register
R in which the bits are updated in parallel by setting R := g(R). This is known as a
one-dimensional cellular automat.

g(5)i = zi-1@ (z; V x i + *) ,

To use this for pseudorandom bit generation, one does the following:

1. Choose z at random.

2. z:=g(z).

3. Output 5 0 . GO to 2.

In [Wo], this pseudorandom bitgenerator is analyzed, and results of a large number
of statistical tests are given. Its security is proved against enemies restricted to
certain types of computations, but its ability to fail arbitrary polynomial time enemies

425

remains a conjecture. All the known evidence, however, indicates that the generator
is in fact very strong.

Let the bits produced by the algorithm on input z be denoted by h(z), h(z),
The natural way to use this to construct a collision free function is to choose two

natural numbers c < d, and let a function fo be defined by

fO(z) = b c (z) , bc+1(5), * - - Y b d (Z) .

There are two possible flaws in this idea, which must be taken care of
First, a natural demand to a function like this is that all output bits depend on

all input bits. It is easy to see that changing 1 bit of z will eventually after many
executions of z := g(z) affect all of z - but the effect only propagates slowly through
the register: 1 bit to the right, and about .25 bit to the left pr. application of g No].
Hence choosing c too small will clearly be dangerous. A natural minimum value of c
would therefore be one that guaranties that all output bits depend on all input bits.

The second problem is that g itself is not collision free: for example, g(1”) =
g(0”) = On. And clearly, g(z) = g(y) implies fo(z) = fo(y). More generally, if
g”(5) = g”(y) for small tl, then there is at least a nonnegligible chance that fo(z) =
fo(Y)*

One natural way to get rid of this difficulty is to restrict f to a subset of the n-bit
strings, thereby lowering the chance that pairs 3, y of the above form exist, or at least
making them harder to find. One concrete possibility is to restrict to strings of the
form zllz, where z is a randomly chosen constant string in (0, l)‘, r < n.

Thus we will define our final candidate f so that it maps an n - r bit string z to

The following lemma provides evidence in favor of this approach:

Lemma 5.1

If g”(z) = g”(y) = z, and 2v consecutive bits of z and y are equal, then I = y.

Proof

Let j be the index of the position immediately to the right of the 2v bits we know to
be equal. Each bit of t depends on at most 2v + 1 bits of z(or y). Let I be chosen such
that ZI is a function of bits j, ...,j + 2v of z(or y). Now, since inverting zj will invert
21, our assumptions imply that xj = yj. We can now “slide” the same argument one
position to the right0

This provides good evidence that choosing a relatively large r will make “trivial”
collisions more sparse and harder to find.

As a concrete example, suppose we choose n = 512, r = 256, c = 257 and
d = 384. The resulting f will map 256-bit strings to 128-bit strings, and thus the
hash function constructed from f by Theorem 3.1 will hash messages in blocks of 128
bits, and produce 128 bit outputs.

426

This function will be extremely well suited for a hardware implementation: in
VLSI, we can compute g by updating all bits in parallel, and thus one application of
g would only take 1 or 2 clock cycles, independently of n. This will produce speeds in
the Mbit/sec area even with quite modest clock speeds. Moreover such a hardware
implementation would be extremely easy and cheap to build.

4.3

Although the knapsack problem is NP-complete, and therefore probably very hard in
the worst cases, making use of this hardness in cryptography is not easy, as shown by
the fate of many public-key systems based on this problem.

The difficulty, however, is largely due to the fact that an encryption function
must be invertible, and that the knapsacks used must therefore have some built-in
structures, which in many cases turn out to be useful to a cryptanalyst. A hash func-
tion, on the other hand, never has to be inverted, and therefore completely randomly
generated knapsacks can be used.

The naive way of doing this is to choose at random numbers al , ..., a, in the interval
1..M, where s is the maximal length of a message to be expected. We can then hash
the binary message rnl, rnz, ..., rnb to

Based on the Knapsack Problem

.
As shown in [GC], this is completely insecure for large s, more precisely when

M C - To solve this, we propose to fix s to something reasonably small
compared to M , and use Theorem 3.1 to construct the actual hash function. As an
example, one could choose s to be about 2Zog(M), which implies that f compresses
s bits blocks to 9/2 bit blocks, and that the condition of [GC] is very far from being
satisfied.

Concrete choices could be 8 = 256 and M = 2lZ0 - 1. This would give an output
from the final hash function of length 128 bits. On an IBM P/S I1 Model 80, this
version will run at a speed of about 250 Kbits/sec.

To specify the function one needs to specify about 4 Kbytes of data. On e.g. a PC
with 640K of RAM, this does not seem excessive. But in situations with a smaller
memory, one can trade time for memory and generate the a’s pseudorandomly in
stead of remembering all of them.

The result of [ImNa] is a strong indication that this function is indeed collision
free, although the security property proved is weaker than what we need here (see
Section 1).

Another indication of the strength of the function is the fact that the problem of
deciding in general whether a given knapsack induces an injective mapping is co-NP
complete. A collision is of course a witness of non- injectiveness (the decision problem
is clearly trivial if the knapsack compresses its input, but this does not imply that a
witness is easy to find).

We remark that even knapsacks that expand their input slightly (and therefore
cannot be used by (ImNa]) can be used to build hash functions secure in the sense

427

of [NaYu], if one is willing to assume that they induce collision free mappings. This
seems reasonable in view of the co-NP completeness of the problem involved and the
fact that the decision problem is non trivial in this case. The construction and proof
can be obtained by adapting the techniques of [NaYu].

References
[Da] Damgbrd: “Collision Free Hash Functions and Public Key Signature Schemes”,

Proceedings of EuroCrypt 87, Springer.

[De] D. Denning: “Digital Signatures with RSA and other Public Key Cryptosys-
terns”, CACM, ~01.27, 1984, pp.441-448.

[DP] Davis and Price: “The Application of Digital Signatures Based on Public Key
Crypto-Systems” , Proc. of CompCon 1980, pp.525-530.

[GC] Godlewski and Camion: “Manipulation and Errors, Localization and Detec-
tion”, Proceedings of EuroCrypt 88, Springer.

[Gi] Gibson: “A Collision Free Hash Function and the Discrete Logarithm Problem
for a Composite Modulus”, Manuscript, 1/10/88, London, England.

[Girl Girault: “Hash Functions Using Modulo-n Operations”, Proceedings of Euro-
Crypt 87, Springer.

[GTV] Girault, T o 5 and Vallk: “Computation of Approximate Gth Roots Mod-
ulo n and Application to Cryptography”, Proceedings of Crypto 88, Springer.

b N a] Impagliazzo and Nmr: “Efficient Cryptographic Schemes Provably as Secure
as Subset Sum”, Proc. of FOCS 89.

[Me] Merkle: “One Way Hash Functions and DES”, these proceedings.

[NaYu] Naar and Yung: “Universal One-way Hash Functions”, Proc. of STOC 89.

pi] Winternitz: “Producing a one-way Hash Function from DES”, Proceedings of
Crypto 83, Springer.

[Wo] Wolfram: “Random Sequence Generation by Cellular Automata”, Adv. Appl.
Math., vol 7, 123-169, 1986.

	A Design Principle for Hash Functions
	Abstract
	Introduction and Related Work
	Preliminaries
	Basic Constructions
	Parallellking Hash Functions

	Concrete Constructions
	Based on Modular Squaring
	Based on Wolfram’s Pseudorandom Bit Generator
	Based on the Knapsack Problem

	References

