+
Skip to main content

Potential Link Suggestion in Scientific Collaboration Networks

  • Conference paper
Complex Networks

Abstract

This works presents a methodology to suggest potential relationships among the elements in the scientific collaboration network. The proposed approach takes into account not only the structure of the relationships among the individuals that constitute the network, but also the content of the information flow propagated in it, modeled from the documents authored by those individuals. The methodology is applied it the accepted papers for the 2nd Workshop on Complex Networks - Complenet’2010. The results show insights on the relationships, both existent and potential, among elements in the network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chang, J., Blei, D.M.: Relational topic models for document networks. In: AISTATS 2009, Clearwater Beach, Florida, USA (2009)

    Google Scholar 

  2. Chang, J., Boyd-Graber, J., et al.: Connections between the lines: augmenting social networks with text. In: KDD 2009, Paris, France (2009)

    Google Scholar 

  3. dos Santos, C.K., Evsukoff, A.G., de Lima, B.S.L.P.: Cluster analysis in document networks. WIT Transactions on Information and Communication Technologies 40, 95–104 (2008)

    Article  Google Scholar 

  4. dos Santos, C.K., Evsukoff, A.G., de Lima, B.S.L.P.: Spectral clustering and community detection in document networks. WIT Transactions on Information and Communication Technologies 42, 41–50 (2009)

    Article  Google Scholar 

  5. Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proceedings of the National Academy of Sciences 104(1), 36–41 (2007)

    Article  Google Scholar 

  6. Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. In: CIKM 2003. ACM, New Orleans (2003)

    Google Scholar 

  7. Newman, M.E.J.: Scientific collaboration networks: I. Network construction and fundamental results. Phys. Rev. E 64, 016131 (2001)

    Article  Google Scholar 

  8. Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA 98, 404–409 (2001a)

    Article  MathSciNet  MATH  Google Scholar 

  9. Newman, M.E.J.: Modularity and community structure in networks. PNAS 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  10. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69(2), 26113–26115 (2004)

    Article  Google Scholar 

  11. Ruan, J., Zhang, W.: Identifying network communities with a high resolution. Physical Review E 77(1), 16104–16112 (2008)

    Article  Google Scholar 

  12. Wang, G., Shen, Y., et al.: A vector partitioning approach to detecting community structure in complex networks. Comput. Math. Appl. 55(12), 2746–2752 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. White, S., Smyth, P.: A spectral clustering approach to finding communities in graphs. In: SIAM International Conference on Data Mining, pp. 76–84 (2005)

    Google Scholar 

  14. Xiang, T., Gong, S.: Spectral clustering with eigenvector selection. Pattern Recognition 41(3), 1012–1029 (2008)

    Article  MATH  Google Scholar 

  15. Zarei, M., Samani, K.A.: Eigenvectors of network complement reveal community structure more accurately. Physica A 388(8), 1721–1730 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

dos Santos, C.K., Onoda, M., Bursztyn, V.S., Bastos, V.M., Fonseca, M.P.A., Evsukoff, A.G. (2011). Potential Link Suggestion in Scientific Collaboration Networks. In: da F. Costa, L., Evsukoff, A., Mangioni, G., Menezes, R. (eds) Complex Networks. Communications in Computer and Information Science, vol 116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25501-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25501-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25500-7

  • Online ISBN: 978-3-642-25501-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Publish with us

Policies and ethics

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载