+
Skip to main content

On the Verification of Quantum Circuits (Research Challenges and Opportunities)

  • Chapter
  • First Online:
Principles of Formal Quantitative Analysis

Abstract

Quantum technology is advancing at an exceptional pace and holds the potential to transform numerous sectors on both national and global scales. As quantum systems become more sophisticated and widespread, ensuring their correctness becomes critically important. This highlights the pressing need for rigorous tools capable of analyzing and verifying their behavior. However, developing such verification tools poses significant challenges. Fundamental quantum phenomena—most notably superposition and entanglement—lead to program behaviors that differ radically from those in classical computing. These characteristics give rise to inherently probabilistic models and result in exponentially large state spaces, even for systems of modest complexity.

In this paper, we outline initial steps toward addressing these challenges by drawing on insights gained from the verification of classical systems within our community. We then present a roadmap for designing novel verification frameworks that adapt the strengths of classical methods—such as succinct property specification, precise fault detection, automation, and scalability—to the quantum setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Throughout the text, we illustrate the challenges encountered in verifying quantum circuits through examples. For clarity, these examples are simplified. Full technical details are beyond the scope of this document and can be found, for example, in [35].

  2. 2.

    An amplitude generalizes the classical notion of probability. The square of the absolute value of a complex amplitude gives the corresponding probability. The use of complex numbers permits constructive and destructive interference, allowing for the cancellation of certain outcomes.

  3. 3.

    To simplify notation, we may represent column vectors using their transposes.

  4. 4.

    Again, we give a high-level description here. We refer, e.g., to [35] for the algorithm details.

References

  1. Abdulla, P.A.: A symbolic approach to verifying quantum systems. Commun. ACM (2025). https://doi.org/10.1145/3725725

  2. Abdulla, P.A., et al.: An automata-based framework for quantum circuit verification. Presentation at PLanQC 2025, The Fifth International Workshop on Programming Languages for Quantum Computing (2025)

    Google Scholar 

  3. Abdulla, P.A., et al.: Verifying quantum circuits with level-synchronized tree automata. Proc. ACM Program. Lang. 9(POPL), 923–953 (2025). https://doi.org/10.1145/3704868

  4. Abdulla, P.A., Chen, Y.-F., Holík, L., Mayr, R., Vojnar, T.: When simulation meets antichains. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 158–174. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-2_14

    Chapter  Google Scholar 

  5. Abdulla, P.A., Delzanno, G., Henda, N.B., Rezine, A.: Regular model checking without transducers (on efficient verification of parameterized systems). In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 721–736. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-1_56

    Chapter  Google Scholar 

  6. Abdulla, P., Haziza, F., Holík, L.: Parameterized verification through view abstraction. Int. J. Softw. Tools Technol. Transfer 18(5), 495–516 (2015). https://doi.org/10.1007/s10009-015-0406-x

    Article  Google Scholar 

  7. Amy, M.: Towards large-scale functional verification of universal quantum circuits. In: Selinger, P., Chiribella, G. (eds.) Proceedings 15th International Conference on Quantum Physics and Logic, QPL 2018, Halifax, Canada, 3–7 June 2018. EPTCS, vol. 287, pp. 1–21 (2018). https://doi.org/10.4204/EPTCS.287.1

  8. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)

    Google Scholar 

  9. Bauer-Marquart, F., Leue, S., Schilling, C.: symQV: automated symbolic verification of quantum programs. In: Chechik, M., Katoen, J., Leucker, M. (eds.) Formal Methods - 25th International Symposium, FM 2023, Lübeck, Germany, 6–10 March 2023, Proceedings. Lecture Notes in Computer Science, vol. 14000, pp. 181–198. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-27481-7_12

  10. Burgholzer, L., Jimenez-Pastor, A., Larsen, K.G., Tribastone, M., Tschaikowski, M., Wille, R.: Forward and backward constrained bisimulations for quantum circuits using decision diagrams. ACM Trans. Quantum Comput. 6(2) (2025). https://doi.org/10.1145/3712711

  11. Burgholzer, L., Wille, R.: Advanced equivalence checking for quantum circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 40, 1810–1824 (2020)

    Article  Google Scholar 

  12. Chareton, C., Bardin, S., Bobot, F., Perrelle, V., Valiron, B.: An automated deductive verification framework for circuit-building quantum programs. In: Yoshida, N. (ed.) ESOP. LNCS, vol. 12648, pp. 148–177. Springer, Cham (2021)

    Google Scholar 

  13. Chen, T.F., Chen, Y.F., Jiang, J.H.R., Jobranová, S., Lengál, O.: Accelerating quantum circuit simulation with symbolic execution and loop summarization. In: Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE/ACM (2024)

    Google Scholar 

  14. Chen, Y.F., et al.: Autoq 2.0: from verification of quantum circuits to verification of quantum programs. In: Proceedings of the 31st International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS). ETAPS 2025. Springer, Cham (2025). https://doi.org/10.1007/978-3-031-90660-2_5

  15. Chen, Y., Chung, K., Lengál, O., Lin, J., Tsai, W.: AutoQ: an automata-based quantum circuit verifier. In: Enea, C., Lal, A. (eds.) Computer Aided Verification - 35th International Conference, CAV 2023, Paris, France, 17–22 July 2023, Proceedings, Part III. Lecture Notes in Computer Science, vol. 13966, pp. 139–153. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-37709-9_7

  16. Chen, Y., Chung, K., Lengál, O., Lin, J., Tsai, W., Yen, D.: An automata-based framework for verification and bug hunting in quantum circuits. Proc. ACM Program. Lang. 7(PLDI), 1218–1243 (2023). https://doi.org/10.1145/3591270

  17. Chen, Y., Rümmer, P., Tsai, W.: A theory of cartesian arrays (with applications in quantum circuit verification). In: Pientka, B., Tinelli, C. (eds.) Automated Deduction - CADE 29 - 29th International Conference on Automated Deduction, Rome, Italy, 1–4 July 2023, Proceedings. Lecture Notes in Computer Science, vol. 14132, pp. 170–189. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38499-8_10

  18. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model Checking. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8

  19. D’Hondt, E., Panangaden, P.: Quantum weakest preconditions. Math. Struct. Comput. Sci. 16(3), 429–451 (2006)

    Article  MathSciNet  Google Scholar 

  20. Fang, W., Ying, M.: Symbolic execution for quantum error correction programs. Proc. ACM Program. Lang. 8(PLDI), 1040–1065 (2024)

    Google Scholar 

  21. Floyd, R.W.: Assigning meanings to programs. 19, 19–32 (1967)

    Google Scholar 

  22. Hoare, C.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576–580 (1969). https://doi.org/10.1145/363235.363259

    Article  Google Scholar 

  23. King, J.C.: Symbolic execution and program testing. 19(7) (1976). https://doi.org/10.1145/360248.360252

  24. Kissinger, A., van de Wetering, J.: Simulating quantum circuits with ZX-calculus reduced stabiliser decompositions. Quantum Sci. Technol. 7(4), 044001 (2022)

    Article  Google Scholar 

  25. Mei, J., Bonsangue, M., Laarman, A.: Simulating quantum circuits by model counting. In: Computer Aided Verification. Springer, Cham (2024)

    Google Scholar 

  26. Mei, J., Coopmans, T., Bonsangue, M., Laarman, A.: Equivalence checking of quantum circuits by model counting. In: Automated Reasoning, pp. 401–421. Springer, Cham (2024)

    Google Scholar 

  27. Niemann, P., Wille, R., Miller, D.M., Thornton, M.A., Drechsler, R.: Qmdds: efficient quantum function representation and manipulation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35(1), 86–99 (2016)

    Article  Google Scholar 

  28. Perdrix, S.: Quantum entanglement analysis based on abstract interpretation. In: International Static Analysis Symposium, pp. 270–282. Springer, Cham (2008)

    Google Scholar 

  29. Piribauer, J., Baier, C.: Partial and conditional expectations in Markov decision processes with integer weights. In: Bojańczyk, M., Simpson, A. (eds.) FoSSaCS 2019. LNCS, vol. 11425, pp. 436–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17127-8_25

    Chapter  Google Scholar 

  30. Sistla, M., Chaudhuri, S., Reps, T.: Symbolic quantum simulation with quasimodo. In: Enea, C., Lal, A. (eds.) Computer Aided Verification, pp. 213–225. Springer, Cham (2023)

    Google Scholar 

  31. Tsai, Y.H., Jiang, J.H.R., Jhang, C.S.: Bit-slicing the hilbert space: scaling up accurate quantum circuit simulation. In: Proceedings of the 58th ACM/IEEE Design Automation Conference (DAC), pp. 439–444. IEEE (2021)

    Google Scholar 

  32. Vinkhuijzen, L., Coopmans, T., Elkouss, D., Dunjko, V., Laarman, A.: LIMDD: a decision diagram for simulation of quantum computing including stabilizer states. Quantum 7, 1108 (2023). https://doi.org/10.22331/q-2023-09-11-1108

  33. Wei, C.Y., Tsai, Y.H., Jhang, C.S., Jiang, J.H.R.: Accurate BDD-based unitary operator manipulation for scalable and robust quantum circuit verification. In: Proceedings of the 59th ACM/IEEE Design Automation Conference (DAC), pp. 523–528 (2022)

    Google Scholar 

  34. De Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains: a new algorithm for checking universality of finite automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 17–30. Springer, Heidelberg (2006). https://doi.org/10.1007/11817963_5

    Chapter  Google Scholar 

  35. Yanofsky, N.S., Mannucci, M.A.: Quantum Computing for Computer Scientists, 1st edn. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  36. Ying, M.: Floyd-Hoare logic for quantum programs. ACM Trans. Program. Lang. Syst. (TOPLAS) 33(6), 1–49 (2012)

    Article  Google Scholar 

  37. Yu, N., Palsberg, J.: Quantum abstract interpretation. In: Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, pp. 542–558 (2021)

    Google Scholar 

  38. Zulehner, A., Hillmich, S., Wille, R.: How to efficiently handle complex values? Implementing decision diagrams for quantum computing. In: 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 1–7 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parosh Aziz Abdulla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2026 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdulla, P.A. et al. (2026). On the Verification of Quantum Circuits (Research Challenges and Opportunities). In: Bertrand, N., Dubslaff, C., Klüppelholz, S. (eds) Principles of Formal Quantitative Analysis. Lecture Notes in Computer Science, vol 15760. Springer, Cham. https://doi.org/10.1007/978-3-031-97439-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-97439-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-97438-0

  • Online ISBN: 978-3-031-97439-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载