+
X
Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Conformal leptogenesis in composite Higgs models

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 20 February 2025
  • Volume 2025, article number 132, (2025)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Conformal leptogenesis in composite Higgs models
Download PDF
  • Kaustubh Agashe  ORCID: orcid.org/0009-0001-1939-38071,
  • Peizhi Du  ORCID: orcid.org/0000-0001-6801-48292,
  • Majid Ekhterachian  ORCID: orcid.org/0000-0002-1980-24983,
  • Chee Sheng Fong  ORCID: orcid.org/0000-0001-7693-60574,
  • Sungwoo Hong  ORCID: orcid.org/0000-0003-3211-81615 &
  • …
  • Luca Vecchi  ORCID: orcid.org/0000-0001-5254-88266 
  • 230 Accesses

  • 2 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We study the generation of the baryon asymmetry in Composite Higgs models with partial compositeness of the Standard Model (SM) fermions and heavy right-handed neutrinos, developing for the first time a complete picture of leptogenesis in that setup. The asymmetry is induced by the out of equilibrium decays of the heavy right-handed neutrinos into a plasma of the nearly conformal field theory (CFT), i.e. the deconfined phase of the Composite Higgs dynamics. This exotic mechanism, which we call Conformal Leptogenesis, admits a reliable description in terms of a set of “Boltzmann equations” whose coefficients can be expressed in terms of correlation functions of the CFT. The asymmetry thus generated is subsequently affected by the supercooling resulting from the confining phase transition of the strong Higgs sector as well as by the washout induced by the resonances formed after the transition. Nevertheless, a qualitative description of the latter effects suggests that conformal leptogenesis can successfully reproduce the observed baryon asymmetry in a wide region of parameter space. A distinctive signature of our scenarios is a sizable compositeness for all the generations of SM neutrinos, which is currently consistent with all constraints but may be within reach of future colliders.

Article PDF

Download to read the full article text

Similar content being viewed by others

Type-I thermal leptogenesis in \(Z_3\)-symmetric three Higgs doublet model

Article Open access 09 November 2020

Vector and axial-vector resonances in composite models of the Higgs boson

Article Open access 11 November 2016

Leptogenesis in SO(10) with minimal Yukawa sector

Article Open access 25 October 2024

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Asymmetric Synthesis
  • Complement Cascade
  • Group Level Phenomena
  • Particle Physics
  • Phase Transition and Critical Phenomena
  • Theoretical Particle Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. G. Panico and A. Wulzer, The Composite Nambu-Goldstone Higgs, Lect. Notes Phys. 913 (2016) [https://doi.org/10.1007/978-3-319-22617-0] [INSPIRE].

  2. D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].

    Article  ADS  Google Scholar 

  3. T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE].

  4. K. Agashe, G. Perez and A. Soni, Flavor structure of warped extra dimension models, Phys. Rev. D 71 (2005) 016002 [hep-ph/0408134] [INSPIRE].

  5. R. Contino and A. Pomarol, Holography for fermions, JHEP 11 (2004) 058 [hep-th/0406257] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. K. Agashe, S. Hong and L. Vecchi, Warped seesaw mechanism is physically inverted, Phys. Rev. D 94 (2016) 013001 [arXiv:1512.06742] [INSPIRE].

  7. M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

  8. K. Agashe et al., Hybrid seesaw leptogenesis and TeV singlets, Phys. Lett. B 785 (2018) 489 [arXiv:1804.06847] [INSPIRE].

    Article  ADS  Google Scholar 

  9. K. Agashe et al., Natural Seesaw and Leptogenesis from Hybrid of High-Scale Type I and TeV-Scale Inverse, JHEP 04 (2019) 029 [arXiv:1812.08204] [INSPIRE].

    Article  ADS  Google Scholar 

  10. H. Georgi, Unparticle physics, Phys. Rev. Lett. 98 (2007) 221601 [hep-ph/0703260] [INSPIRE].

  11. D. Bodeker and M. Laine, Kubo relations and radiative corrections for lepton number washout, JCAP 05 (2014) 041 [arXiv:1403.2755] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. D. Bodeker and M. Sangel, Lepton asymmetry rate from quantum field theory: NLO in the hierarchical limit, JCAP 06 (2017) 052 [arXiv:1702.02155] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. P. Creminelli, A. Nicolis and R. Rattazzi, Holography and the electroweak phase transition, JHEP 03 (2002) 051 [hep-th/0107141] [INSPIRE].

    Article  ADS  Google Scholar 

  14. L. Randall and G. Servant, Gravitational waves from warped spacetime, JHEP 05 (2007) 054 [hep-ph/0607158] [INSPIRE].

  15. G. Nardini, M. Quiros and A. Wulzer, A Confining Strong First-Order Electroweak Phase Transition, JHEP 09 (2007) 077 [arXiv:0706.3388] [INSPIRE].

    Article  ADS  Google Scholar 

  16. T. Konstandin, G. Nardini and M. Quiros, Gravitational Backreaction Effects on the Holographic Phase Transition, Phys. Rev. D 82 (2010) 083513 [arXiv:1007.1468] [INSPIRE].

  17. T. Konstandin and G. Servant, Cosmological Consequences of Nearly Conformal Dynamics at the TeV scale, JCAP 12 (2011) 009 [arXiv:1104.4791] [INSPIRE].

    Article  ADS  Google Scholar 

  18. D. Bunk, J. Hubisz and B. Jain, A Perturbative RS I Cosmological Phase Transition, Eur. Phys. J. C 78 (2018) 78 [arXiv:1705.00001] [INSPIRE].

    Article  ADS  Google Scholar 

  19. P. Baratella, A. Pomarol and F. Rompineve, The Supercooled Universe, JHEP 03 (2019) 100 [arXiv:1812.06996] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. S. Bruggisser, B. Von Harling, O. Matsedonskyi and G. Servant, Electroweak Phase Transition and Baryogenesis in Composite Higgs Models, JHEP 12 (2018) 099 [arXiv:1804.07314] [INSPIRE].

    Article  ADS  Google Scholar 

  21. E. Megías, G. Nardini and M. Quirós, Cosmological Phase Transitions in Warped Space: Gravitational Waves and Collider Signatures, JHEP 09 (2018) 095 [arXiv:1806.04877] [INSPIRE].

    Article  ADS  Google Scholar 

  22. K. Agashe et al., Cosmological Phase Transition of Spontaneous Confinement, JHEP 05 (2020) 086 [arXiv:1910.06238] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. K. Fujikura, Y. Nakai and M. Yamada, A more attractive scheme for radion stabilization and supercooled phase transition, JHEP 02 (2020) 111 [arXiv:1910.07546] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. L. Delle Rose, G. Panico, M. Redi and A. Tesi, Gravitational Waves from Supercool Axions, JHEP 04 (2020) 025 [arXiv:1912.06139] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  25. K. Agashe et al., Phase Transitions from the Fifth Dimension, JHEP 02 (2021) 051 [arXiv:2010.04083] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. F.R. Ares, M. Hindmarsh, C. Hoyos and N. Jokela, Gravitational waves from a holographic phase transition, JHEP 04 (2020) 100 [arXiv:2011.12878] [INSPIRE].

    ADS  Google Scholar 

  27. P. Agrawal and M. Nee, Avoided deconfinement in Randall-Sundrum models, JHEP 10 (2021) 105 [arXiv:2103.05646] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. N. Levi, T. Opferkuch and D. Redigolo, The supercooling window at weak and strong coupling, JHEP 02 (2023) 125 [arXiv:2212.08085] [INSPIRE].

    Article  ADS  Google Scholar 

  29. C. Csáki, M. Geller, Z. Heller-Algazi and A. Ismail, Relevant dilaton stabilization, JHEP 06 (2023) 202 [arXiv:2301.10247] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. C. Eröncel et al., New horizons in the holographic conformal phase transition, Eur. Phys. J. C 84 (2024) 794 [arXiv:2305.03773] [INSPIRE].

    Article  ADS  Google Scholar 

  31. R.K. Mishra and L. Randall, Consequences of a stabilizing field’s self-interactions for RS cosmology, JHEP 12 (2023) 036 [arXiv:2309.10090] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. R.K. Mishra and L. Randall, Phase transition to RS: cool, not supercool, JHEP 06 (2024) 099 [arXiv:2401.09633] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. M. Dichtl, J. Nava, S. Pascoli and F. Sala, Baryogenesis and leptogenesis from supercooled confinement, JHEP 02 (2024) 059 [arXiv:2312.09282] [INSPIRE].

    Article  ADS  Google Scholar 

  34. M. Frigerio, M. Nardecchia, J. Serra and L. Vecchi, The Bearable Compositeness of Leptons, JHEP 10 (2018) 017 [arXiv:1807.04279] [INSPIRE].

    Article  ADS  Google Scholar 

  35. B. Keren-Zur et al., On Partial Compositeness and the CP asymmetry in charm decays, Nucl. Phys. B 867 (2013) 394 [arXiv:1205.5803] [INSPIRE].

    Article  ADS  Google Scholar 

  36. S.J. Huber and Q. Shafi, Seesaw mechanism in warped geometry, Phys. Lett. B 583 (2004) 293 [hep-ph/0309252] [INSPIRE].

  37. K. Agashe, P. Du and S. Hong, LHC signals for singlet neutrinos from a natural warped seesaw mechanism. I, Phys. Rev. D 97 (2018) 075032 [arXiv:1612.04810] [INSPIRE].

  38. K. Agashe, P. Du and S. Hong, LHC signals for singlet neutrinos from a natural warped seesaw mechanism. II, Phys. Rev. D 97 (2018) 075033 [arXiv:1703.07763] [INSPIRE].

  39. D. Karateev, P. Kravchuk, M. Serone and A. Vichi, Fermion Conformal Bootstrap in 4d, JHEP 06 (2019) 088 [arXiv:1902.05969] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  40. K. Agashe, Relaxing Constraints from Lepton Flavor Violation in 5D Flavorful Theories, Phys. Rev. D 80 (2009) 115020 [arXiv:0902.2400] [INSPIRE].

  41. B. Garbrecht and P. Schwaller, Spectator Effects during Leptogenesis in the Strong Washout Regime, JCAP 10 (2014) 012 [arXiv:1404.2915] [INSPIRE].

    Article  ADS  Google Scholar 

  42. B. Grinstein, K.A. Intriligator and I.Z. Rothstein, Comments on Unparticles, Phys. Lett. B 662 (2008) 367 [arXiv:0801.1140] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  43. D.V. Nanopoulos and S. Weinberg, Mechanisms for Cosmological Baryon Production, Phys. Rev. D 20 (1979) 2484 [INSPIRE].

    Article  ADS  Google Scholar 

  44. W. Buchmuller, P. Di Bari and M. Plumacher, Leptogenesis for pedestrians, Annals Phys. 315 (2005) 305 [hep-ph/0401240] [INSPIRE].

  45. W. Buchmuller, K. Schmitz and G. Vertongen, Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays, Nucl. Phys. B 851 (2011) 481 [arXiv:1104.2750] [INSPIRE].

    Article  ADS  Google Scholar 

  46. W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [INSPIRE].

  47. N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08 (2001) 017 [hep-th/0012148] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  48. R. Rattazzi and A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum model, JHEP 04 (2001) 021 [hep-th/0012248] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  49. K. Agashe, P. Du, S. Hong and R. Sundrum, Flavor Universal Resonances and Warped Gravity, JHEP 01 (2017) 016 [arXiv:1608.00526] [INSPIRE].

    Article  ADS  Google Scholar 

  50. R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [INSPIRE].

  51. S. Blanchet, T. Hambye and F.-X. Josse-Michaux, Reconciling leptogenesis with observable μ → eγ rates, JHEP 04 (2010) 023 [arXiv:0912.3153] [INSPIRE].

    Article  ADS  Google Scholar 

  52. J.A. Harvey and M.S. Turner, Cosmological baryon and lepton number in the presence of electroweak fermion number violation, Phys. Rev. D 42 (1990) 3344 [INSPIRE].

    Article  ADS  Google Scholar 

  53. T. Inui, T. Ichihara, Y. Mimura and N. Sakai, Cosmological baryon asymmetry in supersymmetric Standard Models and heavy particle effects, Phys. Lett. B 325 (1994) 392 [hep-ph/9310268] [INSPIRE].

  54. Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [Erratum ibid. 652 (2021) C4] [arXiv:1807.06209] [INSPIRE].

  55. K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\overline{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].

  56. Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 110 (2024) 030001 [INSPIRE].

  57. A. Blondel and P. Janot, FCC-ee overview: new opportunities create new challenges, Eur. Phys. J. Plus 137 (2022) 92 [arXiv:2106.13885] [INSPIRE].

    Article  ADS  Google Scholar 

  58. MEG collaboration, Search for the lepton flavour violating decay μ+ → e+γ with the full dataset of the MEG experiment, Eur. Phys. J. C 76 (2016) 434 [arXiv:1605.05081] [INSPIRE].

  59. T.S. Roussy et al., An improved bound on the electron’s electric dipole moment, Science 381 (2023) adg4084 [arXiv:2212.11841] [INSPIRE].

  60. A. Glioti, R. Rattazzi, L. Ricci and L. Vecchi, Exploring the Flavor Symmetry Landscape, arXiv:2402.09503 [INSPIRE].

  61. M. Laine and A. Vuorinen, Basics of Thermal Field Theory, Springer (2016) [https://doi.org/10.1007/978-3-319-31933-9] [INSPIRE].

  62. T. Asaka, M. Laine and M. Shaposhnikov, On the hadronic contribution to sterile neutrino production, JHEP 06 (2006) 053 [hep-ph/0605209] [INSPIRE].

  63. M. Laine and Y. Schroder, Thermal right-handed neutrino production rate in the non-relativistic regime, JHEP 02 (2012) 068 [arXiv:1112.1205] [INSPIRE].

    Article  ADS  Google Scholar 

  64. L. Iliesiu et al., The Conformal Bootstrap at Finite Temperature, JHEP 10 (2018) 070 [arXiv:1802.10266] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  65. S. Hong, G. Kurup and M. Perelstein, Conformal Freeze-In of Dark Matter, Phys. Rev. D 101 (2020) 095037 [arXiv:1910.10160] [INSPIRE].

  66. S. Hong, G. Kurup and M. Perelstein, Dark matter from a conformal Dark Sector, JHEP 02 (2023) 221 [arXiv:2207.10093] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  67. W.H. Chiu, S. Hong and L.-T. Wang, Conformal freeze-in, composite dark photon, and asymmetric reheating, JHEP 03 (2023) 172 [arXiv:2209.10563] [INSPIRE].

    Article  ADS  Google Scholar 

  68. M. Redi and A. Tesi, General freeze-in and freeze-out, JHEP 12 (2021) 060 [arXiv:2107.14801] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank Riccardo Rattazzi and Emilio Trevisani for discussions, and Matthew Walters for pointing to us the relevant literature on CFT at finite temperature. The work of KA is supported by NSF Grant No. PHY-2210361 and by the Maryland Center for Fundamental Physics. PD is supported by DOE grant DOE-SC0010008. The work of ME is supported by the Swiss National Science Foundation under contract 200020-213104. ME also acknowledges the hospitality of the CERN theory group where part of this work was completed. CSF acknowledges the support by Fundacão de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Contract No. 2019/11197-6 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under Contract No. 304917/2023-0. The work of SH is supported by the National Research Foundation of Korea (NRF) Grant RS-2023-00211732, by the Samsung Science and Technology Foundation under Project Number SSTF-BA2302-05, and by the POSCO Science Fellowship of POSCO TJ Park Foundation. The work of LV was partly supported by the Italian MIUR under contract 202289JEW4 (Flavors: dark and intense), the Iniziativa Specifica “Physics at the Energy, Intensity, and Astroparticle Frontiers” (APINE) of Istituto Nazionale di Fisica Nucleare (INFN), and the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 860881-HIDDeN.

Author information

Authors and Affiliations

  1. Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD, 20742, USA

    Kaustubh Agashe

  2. New High Energy Theory Center, Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, 08854, USA

    Peizhi Du

  3. Theoretical Particle Physics Laboratory (LPTP), Institute of Physics, EPFL, Lausanne, Switzerland

    Majid Ekhterachian

  4. Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, 09.210-170, Brazil

    Chee Sheng Fong

  5. Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea

    Sungwoo Hong

  6. Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Padova, Via Marzolo 8, 35131, Padova, Italy

    Luca Vecchi

Authors
  1. Kaustubh Agashe
    View author publications

    Search author on:PubMed Google Scholar

  2. Peizhi Du
    View author publications

    Search author on:PubMed Google Scholar

  3. Majid Ekhterachian
    View author publications

    Search author on:PubMed Google Scholar

  4. Chee Sheng Fong
    View author publications

    Search author on:PubMed Google Scholar

  5. Sungwoo Hong
    View author publications

    Search author on:PubMed Google Scholar

  6. Luca Vecchi
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Sungwoo Hong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2410.00960

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agashe, K., Du, P., Ekhterachian, M. et al. Conformal leptogenesis in composite Higgs models. J. High Energ. Phys. 2025, 132 (2025). https://doi.org/10.1007/JHEP02(2025)132

Download citation

  • Received: 29 October 2024

  • Accepted: 21 January 2025

  • Published: 20 February 2025

  • Version of record: 20 February 2025

  • DOI: https://doi.org/10.1007/JHEP02(2025)132

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Baryo-and Leptogenesis
  • Compositeness
  • Sterile or Heavy Neutrinos
  • Baryon/Lepton Number Violation

Profiles

  1. Majid Ekhterachian View author profile
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载