+
Skip to main content

DenseNets Reloaded: Paradigm Shift Beyond ResNets and ViTs

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15061))

Included in the following conference series:

  • 345 Accesses

Abstract

This paper revives Densely Connected Convolutional Networks (DenseNets) and reveals the underrated effectiveness over predominant ResNet-style architectures. We believe DenseNets’ potential was overlooked due to untouched training methods and traditional design elements not fully revealing their capabilities. Our pilot study shows dense connections through concatenation are strong, demonstrating that DenseNets can be revitalized to compete with modern architectures. We methodically refine suboptimal components - architectural adjustments, block redesign, and improved training recipes towards widening DenseNets and boosting memory efficiency while keeping concatenation shortcuts. Our models, employing simple architectural elements, ultimately surpass Swin Transformer, ConvNeXt, and DeiT-III - key architectures in the residual learning lineage. Furthermore, our models exhibit near state-of-the-art performance on ImageNet-1K, competing with the very recent models and downstream tasks, ADE20k semantic segmentation, and COCO object detection/instance segmentation. Finally, we provide empirical analyses that uncover the merits of the concatenation over additive shortcuts, steering a renewed preference towards DenseNet-style designs. Our code is available at https://github.com/naver-ai/rdnet.

D. Kim and D. Han—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Increase in GR aims to address the overall low GR in the baseline at an architecture level, whereas the abovementioned GR decrease was to boost ER on a block level.

  2. 2.

    https://github.com/mlfoundations/open_clip.

References

  1. Github repository: Swin transformer for object detection. https://github.com/SwinTransformer/Swin-Transformer-Object-Detection

  2. Ba, J., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  3. Bello, I., et al.: Revisiting ResNets: improved training and scaling strategies. Conf. Neural Inf. Process. Syst. (NeurIPS) 34, 22614–22627 (2021)

    Google Scholar 

  4. Brock, A., De, S., Smith, S.L., Simonyan, K.: High-performance large-scale image recognition without normalization. In: International Conference on Machine Learning (ICML), pp. 1059–1071 (2021)

    Google Scholar 

  5. Cai, Y., et al.: Reversible column networks. In: International Conference on Learning Representations (ICLR) (2023)

    Google Scholar 

  6. Changpinyo, S., Sharma, P., Ding, N., Soricut, R.: Conceptual 12M: pushing web-scale image-text pre-training to recognize long-tail visual concepts. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pp. 3558–3568 (2021)

    Google Scholar 

  7. Chen, Y., Li, J., Xiao, H., Jin, X., Yan, S., Feng, J.: Dual path networks. In: Conference on Neural Information Processing Systems (NIPS), vol. 30 (2017)

    Google Scholar 

  8. Cherti, M., et al.: Reproducible scaling laws for contrastive language-image learning. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2829 (2023)

    Google Scholar 

  9. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: RandAugment: practical automated data augmentation with a reduced search space. In: IEEE Transactions on Computer Vision and Pattern Recognition Workshop (CVPRW), pp. 702–703 (2020)

    Google Scholar 

  10. Dai, Z., Liu, H., Le, Q.V., Tan, M.: CoAtNet: marrying convolution and attention for all data sizes. In: Conference on Neural Information Processing Systems (NeurIPS), pp. 3965–3977 (2021)

    Google Scholar 

  11. Desai, K., Kaul, G., Aysola, Z., Johnson, J.: RedCaps: Web-curated image-text data created by the people, for the people. arXiv preprint arXiv:2111.11431 (2021)

  12. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552 (2017)

  13. Ding, X., Zhang, X., Zhou, Y., Han, J., Ding, G., Sun, J.: Scaling up your kernels to 31x31: revisiting large kernel design in CNNs. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR) (2022)

    Google Scholar 

  14. Dong, X., et al.: CSWin transformer: a general vision transformer backbone with cross-shaped windows. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR) (2022)

    Google Scholar 

  15. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (ICLR) (2020)

    Google Scholar 

  16. Goyal, P., et al.: Accurate, large minibatch SGD: Training ImageNet in 1 hour. arXiv preprint arXiv:1706.02677 (2017)

  17. Guo, M.H., Lu, C.Z., Liu, Z.N., Cheng, M.M., Hu, S.M.: Visual attention network. Computational Visual Media (CVMJ) (2023)

    Google Scholar 

  18. Han, D., Kim, J., Kim, J.: Deep pyramidal residual networks. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pp. 5927–5935 (2017)

    Google Scholar 

  19. Han, D., Yoo, Y., Kim, B., Heo, B.: Learning features with parameter-free layers. arXiv preprint arXiv:2202.02777 (2022)

  20. Han, D., Yun, S., Heo, B., Yoo, Y.: Rethinking channel dimensions for efficient model design. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pp. 732–741 (2021)

    Google Scholar 

  21. Hassani, A., Walton, S., Li, J., Li, S., Shi, H.: Neighborhood attention transformer. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pp. 6185–6194 (2023)

    Google Scholar 

  22. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  23. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  24. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  25. Howard, A.G., et al.: MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  26. Huang, G., Liu, Z., Pleiss, G., Maaten, L.v.d., Weinberger, K.Q.: Convolutional networks with dense connectivity. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 44(12), 8704–8716 (2022)

    Google Scholar 

  27. Huang, G., Sun, Yu., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic depth. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 646–661. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_39

    Chapter  Google Scholar 

  28. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning (ICML), pp. 448–456. PMLR (2015)

    Google Scholar 

  29. Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., Bengio, Y.: The one hundred layers tiramisu: Fully convolutional DenseNets for semantic segmentation. In: IEEE Transactions on Computer Vision and Pattern Recognition Workshop (CVPRW), pp. 11–19 (2017)

    Google Scholar 

  30. Kornblith, S., Norouzi, M., Lee, H., Hinton, G.: Similarity of neural network representations revisited. In: International Conference on Machine Learning (ICML), pp. 3519–3529 (2019)

    Google Scholar 

  31. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84–90 (2012)

    Article  Google Scholar 

  32. Le, Y., Yang, X.S.: Tiny ImageNet visual recognition challenge (2015). https://api.semanticscholar.org/CorpusID:16664790

  33. Lee, Y., Hwang, J.w., Lee, S., Bae, Y., Park, J.: An energy and GPU-computation efficient backbone network for real-time object detection. In: IEEE Transactions on Computer Vision and Pattern Recognition Workshop (CVPRW), pp. 752–760 (2019)

    Google Scholar 

  34. Lee, Y., Park, J.: CenterMask: real-time anchor-free instance segmentation. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  35. Li, S., et al.: MogaNet: multi-order gated aggregation network. In: International Conference on Learning Representations (ICLR) (2024). https://openreview.net/forum?id=XhYWgjqCrV

  36. Li, Y., et al.: MicroNet: improving image recognition with extremely low flops. In: International Conference on Computer Vision (ICCV), pp. 468–477 (2021)

    Google Scholar 

  37. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  38. Lin, W., Wu, Z., Chen, J., Huang, J., Jin, L.: Scale-aware modulation meet transformer. In: International Conference on Computer Vision (ICCV), pp. 5992–6003 (10 2023)

    Google Scholar 

  39. Liu, S., et al.: More convnets in the 2020s: Scaling up kernels beyond 51x51 using sparsity. In: International Conference on Learning Representations (ICLR) (2023)

    Google Scholar 

  40. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  41. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pp. 11976–11986 (2022)

    Google Scholar 

  42. Loshchilov, I., Hutter, F.: SGDR: Stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)

  43. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learning Representations (ICLR) (2019)

    Google Scholar 

  44. Parihar, A.S., Java, A.: Densely connected convolutional transformer for single image dehazing. J. Visual Commun. Image Represent. 90, 103722 (2023)

    Google Scholar 

  45. Pleiss, G., Chen, D., Huang, G., Li, T., van der Maaten, L., Weinberger, K.Q.: Memory-efficient implementation of DenseNets. arXiv preprint arXiv:1707.06990 (2017)

  46. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning (ICML), pp. 8748–8763. PMLR (2021)

    Google Scholar 

  47. Radosavovic, I., Kosaraju, R.P., Girshick, R.B., He, K., Dollár, P.: Designing network design spaces. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pp. 10425–10433 (2020)

    Google Scholar 

  48. Rao, Y., Zhao, W., Tang, Y., Zhou, J., Lim, S.N., Lu, J.: HorNet: efficient high-order spatial interactions with recursive gated convolutions. In: Conference on Neural Information Processing Systems (NeurIPS) (2022)

    Google Scholar 

  49. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  50. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pp. 4510–4520 (2018)

    Google Scholar 

  51. Sharma, P., Ding, N., Goodman, S., Soricut, R.: Conceptual captions: a cleaned, hypernymed, image alt-text dataset for automatic image captioning. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2556–2565 (2018)

    Google Scholar 

  52. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  53. Steiner, A., Kolesnikov, A., Zhai, X., Wightman, R., Uszkoreit, J., Beyer, L.: How to train your ViT? Data, augmentation, and regularization in vision transformers. arXiv preprint arXiv:2106.10270 (2021)

  54. Szegedy, C., et al.: Going deeper with convolutions. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015)

    Google Scholar 

  55. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826 (2016)

    Google Scholar 

  56. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning (ICML), pp. 6105–6114. PMLR (2019)

    Google Scholar 

  57. Tan, M., Le, Q.V.: EfficientNetV2: smaller models and faster training. In: International Conference on Machine Learning (ICML) (2021)

    Google Scholar 

  58. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jegou, H.: Training data-efficient image transformers & distillation through attention. In: International Conference on Machine Learning (ICML), pp. 10347–10357 (2021)

    Google Scholar 

  59. Touvron, H., et al.: Augmenting convolutional networks with attention-based aggregation. arXiv preprint arXiv:2112.13692 (2021)

  60. Touvron, H., Cord, M., J’egou, H.: DeiT III: revenge of the ViT. In: European Conference on Computer Vision (ECCV) (2022)

    Google Scholar 

  61. Trockman, A., Kolter, J.Z.: Patches are all you need? arXiv preprint arXiv:2201.09792 (2022)

  62. Tu, Z., et al.: MaxViT: multi-axis vision transformer. In: European Conference on Computer Vision (ECCV) (2022)

    Google Scholar 

  63. Vaswani, A., et al.: Attention is all you need. In: Conference on Neural Information Processing Systems (NIPS) (2017)

    Google Scholar 

  64. Wang, C.Y., Liao, H.y., Wu, Y.H., Chen, P.Y., Hsieh, J.W., Yeh, I.H.: CSPNet: a new backbone that can enhance learning capability of CNN. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pp. 1571–1580 (2020)

    Google Scholar 

  65. Wang, L., Cao, M., Yuan, X.: EfficientSCI: densely connected network with space-time factorization for large-scale video snapshot compressive imaging. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pp. 18477–18486 (2023)

    Google Scholar 

  66. Wang, R.J., Li, X., Ling, C.X.: Pelee: a real-time object detection system on mobile devices. In: Conference on Neural Information Processing Systems (NeurIPS), pp. 1967–1976 (2018)

    Google Scholar 

  67. Wang, W., et al.: Pyramid vision transformer: a versatile backbone for dense prediction without convolutions. In: International Conference on Computer Vision (ICCV), pp. 548–558 (2021)

    Google Scholar 

  68. Wang, W., et al.: PVT v2: improved baselines with pyramid vision transformer. Comput. Vis. Media (CVMJ) 8(3), 1–10 (2022)

    Google Scholar 

  69. Wang, Z., Xie, K., Zhang, X.Y., Chen, H.Q., Wen, C., He, J.: Small-object detection based on yolo and dense block via image super-resolution. IEEE Access 9, 56416–56429 (2021)

    Article  Google Scholar 

  70. Wightman, R., Touvron, H., Jégou, H.: ResNet strikes back: An improved training procedure in timm. https://github.com/huggingface/pytorch-image-models (2021)

  71. Wu, K., et al.: TinyViT: fast pretraining distillation for small vision transformers. In: European Conference on Computer Vision (ECCV) (2022)

    Google Scholar 

  72. Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J.: Unified perceptual parsing for scene understanding. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 432–448. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_26

    Chapter  Google Scholar 

  73. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pp. 1492–1500 (2017)

    Google Scholar 

  74. Yang, J., Li, C., Dai, X., Gao, J.: Focal modulation networks. In: Conference on Neural Information Processing Systems (NeurIPS) (2022)

    Google Scholar 

  75. Yang, J., et al.: Focal self-attention for local-global interactions in vision transformers. In: Conference on Neural Information Processing Systems (NeurIPS) (2021)

    Google Scholar 

  76. Yu, W., et al.: MetaFormer is actually what you need for vision. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pp. 10819–10829 (2022)

    Google Scholar 

  77. Yu, W., Zhou, P., Yan, S., Wang, X.: InceptionNext: When inception meets convnext. arXiv preprint arXiv:2303.16900 (2023)

  78. Yun, S., et al.: CutMix: regularization strategy to train strong classifiers with localizable features. In: International Conference on Computer Vision (ICCV), pp. 6023–6032 (2019)

    Google Scholar 

  79. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  80. Zhang, J., Jin, Y., Xu, J., Xu, X., Zhang, Y.: MDU-Net: multi-scale densely connected u-net for biomedical image segmentation. Health Inf. Sci. Syst. (HISS) 11(1), 13 (2023)

    Google Scholar 

  81. Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. In: AAAI Conference on Artificial Intelligence (AAAI), pp. 13001–13008 (2020)

    Google Scholar 

  82. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Semantic understanding of scenes through the ADE20K dataset. Int. J. Comput. Vis. (IJCV) 127, 302–321 (2018)

    Article  Google Scholar 

  83. Zhu, L., Wang, X., Ke, Z., Zhang, W., Lau, R.: BiFormer: vision transformer with bi-level routing attention. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR) (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3225 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, D., Heo, B., Han, D. (2025). DenseNets Reloaded: Paradigm Shift Beyond ResNets and ViTs. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15061. Springer, Cham. https://doi.org/10.1007/978-3-031-72646-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72646-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72645-3

  • Online ISBN: 978-3-031-72646-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载