Abstract
This paper revives Densely Connected Convolutional Networks (DenseNets) and reveals the underrated effectiveness over predominant ResNet-style architectures. We believe DenseNets’ potential was overlooked due to untouched training methods and traditional design elements not fully revealing their capabilities. Our pilot study shows dense connections through concatenation are strong, demonstrating that DenseNets can be revitalized to compete with modern architectures. We methodically refine suboptimal components - architectural adjustments, block redesign, and improved training recipes towards widening DenseNets and boosting memory efficiency while keeping concatenation shortcuts. Our models, employing simple architectural elements, ultimately surpass Swin Transformer, ConvNeXt, and DeiT-III - key architectures in the residual learning lineage. Furthermore, our models exhibit near state-of-the-art performance on ImageNet-1K, competing with the very recent models and downstream tasks, ADE20k semantic segmentation, and COCO object detection/instance segmentation. Finally, we provide empirical analyses that uncover the merits of the concatenation over additive shortcuts, steering a renewed preference towards DenseNet-style designs. Our code is available at https://github.com/naver-ai/rdnet.
D. Kim and D. Han—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Increase in GR aims to address the overall low GR in the baseline at an architecture level, whereas the abovementioned GR decrease was to boost ER on a block level.
- 2.
References
Github repository: Swin transformer for object detection. https://github.com/SwinTransformer/Swin-Transformer-Object-Detection
Ba, J., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)
Bello, I., et al.: Revisiting ResNets: improved training and scaling strategies. Conf. Neural Inf. Process. Syst. (NeurIPS) 34, 22614–22627 (2021)
Brock, A., De, S., Smith, S.L., Simonyan, K.: High-performance large-scale image recognition without normalization. In: International Conference on Machine Learning (ICML), pp. 1059–1071 (2021)
Cai, Y., et al.: Reversible column networks. In: International Conference on Learning Representations (ICLR) (2023)
Changpinyo, S., Sharma, P., Ding, N., Soricut, R.: Conceptual 12M: pushing web-scale image-text pre-training to recognize long-tail visual concepts. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pp. 3558–3568 (2021)
Chen, Y., Li, J., Xiao, H., Jin, X., Yan, S., Feng, J.: Dual path networks. In: Conference on Neural Information Processing Systems (NIPS), vol. 30 (2017)
Cherti, M., et al.: Reproducible scaling laws for contrastive language-image learning. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2829 (2023)
Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: RandAugment: practical automated data augmentation with a reduced search space. In: IEEE Transactions on Computer Vision and Pattern Recognition Workshop (CVPRW), pp. 702–703 (2020)
Dai, Z., Liu, H., Le, Q.V., Tan, M.: CoAtNet: marrying convolution and attention for all data sizes. In: Conference on Neural Information Processing Systems (NeurIPS), pp. 3965–3977 (2021)
Desai, K., Kaul, G., Aysola, Z., Johnson, J.: RedCaps: Web-curated image-text data created by the people, for the people. arXiv preprint arXiv:2111.11431 (2021)
DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552 (2017)
Ding, X., Zhang, X., Zhou, Y., Han, J., Ding, G., Sun, J.: Scaling up your kernels to 31x31: revisiting large kernel design in CNNs. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR) (2022)
Dong, X., et al.: CSWin transformer: a general vision transformer backbone with cross-shaped windows. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR) (2022)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (ICLR) (2020)
Goyal, P., et al.: Accurate, large minibatch SGD: Training ImageNet in 1 hour. arXiv preprint arXiv:1706.02677 (2017)
Guo, M.H., Lu, C.Z., Liu, Z.N., Cheng, M.M., Hu, S.M.: Visual attention network. Computational Visual Media (CVMJ) (2023)
Han, D., Kim, J., Kim, J.: Deep pyramidal residual networks. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pp. 5927–5935 (2017)
Han, D., Yoo, Y., Kim, B., Heo, B.: Learning features with parameter-free layers. arXiv preprint arXiv:2202.02777 (2022)
Han, D., Yun, S., Heo, B., Yoo, Y.: Rethinking channel dimensions for efficient model design. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pp. 732–741 (2021)
Hassani, A., Walton, S., Li, J., Li, S., Shi, H.: Neighborhood attention transformer. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pp. 6185–6194 (2023)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: International Conference on Computer Vision (ICCV) (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)
He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38
Howard, A.G., et al.: MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)
Huang, G., Liu, Z., Pleiss, G., Maaten, L.v.d., Weinberger, K.Q.: Convolutional networks with dense connectivity. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 44(12), 8704–8716 (2022)
Huang, G., Sun, Yu., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic depth. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 646–661. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_39
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning (ICML), pp. 448–456. PMLR (2015)
Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., Bengio, Y.: The one hundred layers tiramisu: Fully convolutional DenseNets for semantic segmentation. In: IEEE Transactions on Computer Vision and Pattern Recognition Workshop (CVPRW), pp. 11–19 (2017)
Kornblith, S., Norouzi, M., Lee, H., Hinton, G.: Similarity of neural network representations revisited. In: International Conference on Machine Learning (ICML), pp. 3519–3529 (2019)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84–90 (2012)
Le, Y., Yang, X.S.: Tiny ImageNet visual recognition challenge (2015). https://api.semanticscholar.org/CorpusID:16664790
Lee, Y., Hwang, J.w., Lee, S., Bae, Y., Park, J.: An energy and GPU-computation efficient backbone network for real-time object detection. In: IEEE Transactions on Computer Vision and Pattern Recognition Workshop (CVPRW), pp. 752–760 (2019)
Lee, Y., Park, J.: CenterMask: real-time anchor-free instance segmentation. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR) (2020)
Li, S., et al.: MogaNet: multi-order gated aggregation network. In: International Conference on Learning Representations (ICLR) (2024). https://openreview.net/forum?id=XhYWgjqCrV
Li, Y., et al.: MicroNet: improving image recognition with extremely low flops. In: International Conference on Computer Vision (ICCV), pp. 468–477 (2021)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Lin, W., Wu, Z., Chen, J., Huang, J., Jin, L.: Scale-aware modulation meet transformer. In: International Conference on Computer Vision (ICCV), pp. 5992–6003 (10 2023)
Liu, S., et al.: More convnets in the 2020s: Scaling up kernels beyond 51x51 using sparsity. In: International Conference on Learning Representations (ICLR) (2023)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: International Conference on Computer Vision (ICCV) (2021)
Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pp. 11976–11986 (2022)
Loshchilov, I., Hutter, F.: SGDR: Stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learning Representations (ICLR) (2019)
Parihar, A.S., Java, A.: Densely connected convolutional transformer for single image dehazing. J. Visual Commun. Image Represent. 90, 103722 (2023)
Pleiss, G., Chen, D., Huang, G., Li, T., van der Maaten, L., Weinberger, K.Q.: Memory-efficient implementation of DenseNets. arXiv preprint arXiv:1707.06990 (2017)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning (ICML), pp. 8748–8763. PMLR (2021)
Radosavovic, I., Kosaraju, R.P., Girshick, R.B., He, K., Dollár, P.: Designing network design spaces. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pp. 10425–10433 (2020)
Rao, Y., Zhao, W., Tang, Y., Zhou, J., Lim, S.N., Lu, J.: HorNet: efficient high-order spatial interactions with recursive gated convolutions. In: Conference on Neural Information Processing Systems (NeurIPS) (2022)
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115(3), 211–252 (2015)
Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pp. 4510–4520 (2018)
Sharma, P., Ding, N., Goodman, S., Soricut, R.: Conceptual captions: a cleaned, hypernymed, image alt-text dataset for automatic image captioning. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2556–2565 (2018)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Steiner, A., Kolesnikov, A., Zhai, X., Wightman, R., Uszkoreit, J., Beyer, L.: How to train your ViT? Data, augmentation, and regularization in vision transformers. arXiv preprint arXiv:2106.10270 (2021)
Szegedy, C., et al.: Going deeper with convolutions. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015)
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826 (2016)
Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning (ICML), pp. 6105–6114. PMLR (2019)
Tan, M., Le, Q.V.: EfficientNetV2: smaller models and faster training. In: International Conference on Machine Learning (ICML) (2021)
Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jegou, H.: Training data-efficient image transformers & distillation through attention. In: International Conference on Machine Learning (ICML), pp. 10347–10357 (2021)
Touvron, H., et al.: Augmenting convolutional networks with attention-based aggregation. arXiv preprint arXiv:2112.13692 (2021)
Touvron, H., Cord, M., J’egou, H.: DeiT III: revenge of the ViT. In: European Conference on Computer Vision (ECCV) (2022)
Trockman, A., Kolter, J.Z.: Patches are all you need? arXiv preprint arXiv:2201.09792 (2022)
Tu, Z., et al.: MaxViT: multi-axis vision transformer. In: European Conference on Computer Vision (ECCV) (2022)
Vaswani, A., et al.: Attention is all you need. In: Conference on Neural Information Processing Systems (NIPS) (2017)
Wang, C.Y., Liao, H.y., Wu, Y.H., Chen, P.Y., Hsieh, J.W., Yeh, I.H.: CSPNet: a new backbone that can enhance learning capability of CNN. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pp. 1571–1580 (2020)
Wang, L., Cao, M., Yuan, X.: EfficientSCI: densely connected network with space-time factorization for large-scale video snapshot compressive imaging. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pp. 18477–18486 (2023)
Wang, R.J., Li, X., Ling, C.X.: Pelee: a real-time object detection system on mobile devices. In: Conference on Neural Information Processing Systems (NeurIPS), pp. 1967–1976 (2018)
Wang, W., et al.: Pyramid vision transformer: a versatile backbone for dense prediction without convolutions. In: International Conference on Computer Vision (ICCV), pp. 548–558 (2021)
Wang, W., et al.: PVT v2: improved baselines with pyramid vision transformer. Comput. Vis. Media (CVMJ) 8(3), 1–10 (2022)
Wang, Z., Xie, K., Zhang, X.Y., Chen, H.Q., Wen, C., He, J.: Small-object detection based on yolo and dense block via image super-resolution. IEEE Access 9, 56416–56429 (2021)
Wightman, R., Touvron, H., Jégou, H.: ResNet strikes back: An improved training procedure in timm. https://github.com/huggingface/pytorch-image-models (2021)
Wu, K., et al.: TinyViT: fast pretraining distillation for small vision transformers. In: European Conference on Computer Vision (ECCV) (2022)
Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J.: Unified perceptual parsing for scene understanding. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 432–448. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_26
Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pp. 1492–1500 (2017)
Yang, J., Li, C., Dai, X., Gao, J.: Focal modulation networks. In: Conference on Neural Information Processing Systems (NeurIPS) (2022)
Yang, J., et al.: Focal self-attention for local-global interactions in vision transformers. In: Conference on Neural Information Processing Systems (NeurIPS) (2021)
Yu, W., et al.: MetaFormer is actually what you need for vision. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pp. 10819–10829 (2022)
Yu, W., Zhou, P., Yan, S., Wang, X.: InceptionNext: When inception meets convnext. arXiv preprint arXiv:2303.16900 (2023)
Yun, S., et al.: CutMix: regularization strategy to train strong classifiers with localizable features. In: International Conference on Computer Vision (ICCV), pp. 6023–6032 (2019)
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. In: International Conference on Learning Representations (ICLR) (2018)
Zhang, J., Jin, Y., Xu, J., Xu, X., Zhang, Y.: MDU-Net: multi-scale densely connected u-net for biomedical image segmentation. Health Inf. Sci. Syst. (HISS) 11(1), 13 (2023)
Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. In: AAAI Conference on Artificial Intelligence (AAAI), pp. 13001–13008 (2020)
Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Semantic understanding of scenes through the ADE20K dataset. Int. J. Comput. Vis. (IJCV) 127, 302–321 (2018)
Zhu, L., Wang, X., Ke, Z., Zhang, W., Lau, R.: BiFormer: vision transformer with bi-level routing attention. In: IEEE Transactions on Computer Vision and Pattern Recognition (CVPR) (2023)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kim, D., Heo, B., Han, D. (2025). DenseNets Reloaded: Paradigm Shift Beyond ResNets and ViTs. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15061. Springer, Cham. https://doi.org/10.1007/978-3-031-72646-0_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-72646-0_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72645-3
Online ISBN: 978-3-031-72646-0
eBook Packages: Computer ScienceComputer Science (R0)