+
Skip to main content

A General Algorithmic Scheme for Modular Decompositions of Hypergraphs and Applications

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11638))

Included in the following conference series:

  • 734 Accesses

  • 3 Citations

Abstract

We study here algorithmic aspects of modular decomposition of hypergraphs. In the literature one can find three different definitions of modules, namely: the standard one [19], the k-subset modules [6] and the Courcelle’s one [11]. Using the fundamental tools defined for combinatorial decompositions such as partitive and orthogonal families, we directly derive a linear time algorithm for Courcelle’s decomposition. Then we introduce a general algorithmic tool for partitive families and apply it for the other two definitions of modules to derive polynomial algorithms. For standard modules it leads to an algorithm in \(O(n^3 \cdot l)\) time (where n is the number of vertices and l is the sum of the size of the edges). For k-subset modules we obtain \(O(n^3\cdot m\cdot l)\) (where m is the number of edges). This is an improvement from the best known algorithms for k-subset modular decomposition, which was not polynomial w.r.t. n and m, and is in \(O(n^{3k-5})\) time [6] where k denotes the maximal size of an edge. Finally we focus on applications of orthogonality to modular decompositions of tournaments, simplifying the algorithm from [18]. The question of designing a linear time algorithms for the standard modular decomposition of hypergraphs remains open.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berge, C.: Graphes et hypergraphes. Dunod, Paris (1970)

    MATH  Google Scholar 

  2. Bergeron, A., Chauve, C., de Montgolfier, F., Raffinot, M.: Computing common intervals of K permutations, with applications to modular decomposition of graphs. SIAM J. Discrete Math. 22(3), 1022–1039 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Billera, L.J.: Clutter decomposition and monotonic boolean functions. Ann. N.-Y. Acad. Sci. 175, 41–48 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  4. Billera, L.J.: On the composition and decomposition of clutters. J. Combin. Theory, Ser. B 11(3), 234–245 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bioch, J.C.: The complexity of modular decomposition of boolean functions. Discrete Appl. Math. 149(1–3), 1–13 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonizzoni, P., Vedova, G.D.: An algorithm for the modular decomposition of hypergraphs. J. Algorithms 32(2), 65–86 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Borassi, M., Crescenzi, P., Habib, M.: Into the square: on the complexity of some quadratic-time solvable problems. Electr. Notes Theor. Comput. Sci. 322, 51–67 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Capelle, C., Habib, M., de Montgolfier, F.: Graph decompositions and factorizing permutations. Discrete Math. Theor. Comput. Sci. 5(1), 55–70 (2002)

    MathSciNet  MATH  Google Scholar 

  9. Charbit, P., Habib, M., Limouzy, V., de Montgolfier, F., Raffinot, M., Rao, M.: A note on computing set overlap classes. Inf. Process. Lett. 108(4), 186–191 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chein, M., Habib, M., Maurer, M.C.: Partitive hypergraphs. Discrete Math. 37(1), 35–50 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. Courcelle, B.: A monadic second-order definition of the structure of convex hypergraphs. Inf. Comput. 178(2), 391–411 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dahlhaus, E.: Parallel algorithms for hierarchical clustering and applications to split decomposition and parity graph recognition. J. Algorithms 36(2), 205–240 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Habib, M., McConnell, R.M., Paul, C., Viennot, L.: Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing. Theor. Comput. Sci. 234(1–2), 59–84 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decomposition. Comput. Sci. Rev. 4(1), 41–59 (2010)

    Article  MATH  Google Scholar 

  15. James, L.O., Stanton, R.G., Cowan, D.D.: Graph decomposition for undirected graphs. In: Proceedings of the 3rd Southeastern International Conference on Combinatorics, Graph Theory, and Computing, pp. 281–290 (1972)

    Google Scholar 

  16. McConnell, R.M.: A certifying algorithm for the consecutive-ones property. In: SODA, Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 768–777 (2004)

    Google Scholar 

  17. McConnell, R.M., de Montgolfier, F.: Algebraic operations on PQ trees and modular decomposition trees. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 421–432. Springer, Heidelberg (2005). https://doi.org/10.1007/11604686_37

    Chapter  Google Scholar 

  18. McConnell, R.M., de Montgolfier, F.: Linear-time modular decomposition of directed graphs. Discrete Appl. Math. 145(2), 198–209 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Möhring, R., Radermacher, F.: Substitution decomposition for discrete structures and connections with combinatorial optimization. In: Proceedings of the Workshop on Algebraic Structures in Operations Research, pp. 257–355 (1984)

    Chapter  Google Scholar 

  20. Möhring, R.H.: Algorithmic aspects of the substitution decomposition in optimization over relations, set systems and boolean functions. Ann. Oper. Res. 4, 195–225 (1985)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Habib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Habib, M., de Montgolfier, F., Mouatadid, L., Zou, M. (2019). A General Algorithmic Scheme for Modular Decompositions of Hypergraphs and Applications. In: Colbourn, C., Grossi, R., Pisanti, N. (eds) Combinatorial Algorithms. IWOCA 2019. Lecture Notes in Computer Science(), vol 11638. Springer, Cham. https://doi.org/10.1007/978-3-030-25005-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25005-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25004-1

  • Online ISBN: 978-3-030-25005-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载