+
Skip to main content
Log in

Relationship Between Integro-Differential Schrodinger Equation with a Symmetric Kernel and Position-Dependent Effective Mass

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The solution of integro-differential Schrodinger equation (IDSE) which was introduced by physicists has a great role in the fields of science. The purpose of this paper comes in two parts. First, studying the relationship between integro-differential Schrodinger equation with a symmetric non-local potential and one-dimensional Schrodinger equation with a position-dependent effective mass. Second, we show that the quantum Hamiltonian for a particle with position-dependent mass after applying Liouville–Green transformations will be converted to a quantum Hamiltonian for a particle with constant mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Baseia, Phys. Rev. A 38, 1632 (1988)

    Article  ADS  Google Scholar 

  2. G. Wataghin, Z. Phys. 88, 92 (1934)

    Article  ADS  Google Scholar 

  3. D. Kiang, Am. J. Phys. 39, 996 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  4. A.B. Balantekin, J.F. Beacom, M.A. Candido Ribeiro, J. Phys. G Nucl. Part. Phys. 24, 2087 (1998)

    Article  ADS  Google Scholar 

  5. B. Khosropour, Eur. Phys. J. Plus 131, 396 (2016)

    Article  Google Scholar 

  6. F. Arias de Saavedra, J. Boronat, A. Polls, A. Fabrocini, Phys. Rev. B 50, 4248 (1994)

    Article  ADS  Google Scholar 

  7. Y.M. Li, H.M. Lu, O. Voskoboynikov, C.P. Lee, S.M. Sze, Surf. Sci. 811, 532 (2003)

    Google Scholar 

  8. O. Roos, Phys. Rev. B 27, 7547 (1983)

    Article  ADS  Google Scholar 

  9. A. de Souza Dutra, J.A. de Oliveira, J. Phys. A 42, 025304 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  10. B. Midya, B. Roy, Phys. Lett. A 373, 4117 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  11. R.A. Kraenkel, M. Senthilvelan, J. Phys. A 42, 415303 (2009)

    Article  MathSciNet  Google Scholar 

  12. A. de Souza Dutra, J.A. de Oliveira, Phys. Scr. 78, 035009 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  13. Z. Chen, G. Chen, Phys. Scr. 73, 354 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  14. C.S. Jia, A. de Souza Dutra, Ann. Phys. (N.Y.) 323, 566 (2008)

    Article  ADS  Google Scholar 

  15. B. Bagchi, J. Phys. A 40, F1041 (2007)

    Article  ADS  Google Scholar 

  16. A. Arda, R. Sever, Few Body Syst. 56, 697 (2015)

    Article  ADS  Google Scholar 

  17. A.G. Schmidt, A.D. Azeredo, A. Gusso, Phys. Lett. A 372, 2774 (2008)

    Article  ADS  Google Scholar 

  18. S. Cruz y Cruz, J. Negro, L.M. Nieto, Phys. Lett. A 369, 400 (2007)

  19. G. Chen, Z.D. Chen, Phys. Lett. A 331, 312 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  20. B. Bagchi, P. Gorain, C. Quesne, R. Roychoudhury, Mod. Phys. Lett. A 19, 2765 (2004)

    Article  ADS  Google Scholar 

  21. Y. Chargui, Few Body Syst. 57, 289 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  22. K. Bencheikh, K. Berkane, S. Bouizane, J. Phys. A 37, 10719 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  23. T. Gora, F. Williams, Phys. Rev. 177, 1179 (1969)

    Article  ADS  Google Scholar 

  24. J.J. Pena, G. Ovando, J. Morales, J. Garcia-Ravelo, C. Pacheco-Garcia, Int. J. Quantum Chem. 107, 3039 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Khosropour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosropour, B., Moayedi, S.K. & Sabzali, R. Relationship Between Integro-Differential Schrodinger Equation with a Symmetric Kernel and Position-Dependent Effective Mass. Few-Body Syst 59, 75 (2018). https://doi.org/10.1007/s00601-018-1399-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-018-1399-2

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载