+

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 3.0 License. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

  • Open Access

LDA+DMFT Approach to Magnetocrystalline Anisotropy of Strong Magnets

Jian-Xin Zhu1,*, Marc Janoschek1, Richard Rosenberg2, Filip Ronning1, J. D. Thompson1, Michael A. Torrez1, Eric D. Bauer1, and Cristian D. Batista1,†

  • 1Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
  • 2Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
  • *jxzhu@lanl.gov
  • cdb@lanl.gov

Phys. Rev. X 4, 021027 – Published 15 May, 2014

DOI: https://doi.org/10.1103/PhysRevX.4.021027

Abstract

The new challenges posed by the need of finding strong rare-earth-free magnets demand methods that can predict magnetization and magnetocrystalline anisotropy energy (MAE). We argue that correlated electron effects, which are normally underestimated in band-structure calculations, play a crucial role in the development of the orbital component of the magnetic moments. Because magnetic anisotropy arises from this orbital component, the ability to include correlation effects has profound consequences on our predictive power of the MAE of strong magnets. Here, we show that incorporating the local effects of electronic correlations with dynamical mean-field theory provides reliable estimates of the orbital moment, the mass enhancement, and the MAE of YCo5.

Popular Summary

Article Text

References (44)

  1. L. Lewis and F. Jimnez-Villacorta, Perspectives on Permanent Magnetic Materials for Energy Conversion and Power Generation, Metall. Mater. Trans. A 44, 2 (2013).
  2. H. R. Kirchmayr and C. A. Poldy, in Handbook on the Physics and Chemistry of Rare Earths, Lecture Notes in Physics Vol. 2 (North Holland, Amsterdam, 1979).
  3. J. H. van Vleck, On the Anisotropy of Cubic Ferromagnetic Crystals, Phys. Rev. 52, 1178 (1937).
  4. E. I. Kondorskii and E. Straube, Magnetic Anisotropy of Nickel, Zh. Eksp. Teor. Fiz. 63, 356 (1972) [Sov. Phys. JETP 36, 188 (1973)].
  5. F. Bloch and G. Gentile, Zur Anisotropie der Magnetisierung Ferromagnetischer Einkristalle, Z. Phys. 70, 395 (1931).
  6. H. Brooks, Ferromagnetic Anisotropy and the Itinerant Electron Model, Phys. Rev. 58, 909 (1940).
  7. G. H. O. Daalderop, P. J. Kelly, and M. F. H. Schuurmans, First-Principles Calculation of the Magnetocrystalline Anisotropy Energy of Iron, Cobalt, and Nickel, Phys. Rev. B 41, 11 919 (1990).
  8. J. Trygg, B. Johansson, O. Eriksson, and J. M. Wills, Total Energy Calculation of the Magnetocrystalline Anisotropy Energy in the Ferromagnetic 3d Metals, Phys. Rev. Lett. 75, 2871 (1995).
  9. H. J. F. Jansen, Origin of Orbital Momentum and Magnetic Anisotropy in Transition Metals, J. Appl. Phys. 67, 4555 (1990).
  10. L. Nordström, M. S. S. Brooks, and B. Johansson, Calculation of Orbital Magnetism and Magnetocrystalline Anisotropy Energy in YCo5, J. Phys. Condens. Matter 4, 3261 (1992).
  11. J. Schweizer and F. Tasset, Polarised Neutron Study of the RCo5 Intermetallic Compounds. I. The Cobalt Magnetisation in YCo5, J. Phys. F 10, 2799 (1980).
  12. A. Heidemann, D. Richter, and K. H. J. Buschow, Investigation of the Hyperfine Fields in the Compounds LaCo13, LaCo5, YCo5 and ThCo5 by Means of Inelastic Neutron Scattering, Z. Phys. B 22, 367 (1975).
  13. M. S. S. Brooks, Calculated Ground State Properties of Light Actinide Metals and Their Compounds, Physica (Amsterdam) 130B+C, 6 (1985).
  14. O. Eriksson, M. S. S. Brooks, and B. Johansson, Orbital Polarization in Narrow-Band Systems: Application to Volume Collapses in Light Lanthanides, Phys. Rev. B 41, 7311 (1990).
  15. J. Alameda, J. Deportes, D. Givord, R. Lemaire, and Q. Lu, Large Magnetization Anisotropy in Uniaxial YCo5 Intermetallic, J. Magn. Magn. Mater. 15–18, 1257 (1980).
  16. H. Takahashi, S. Ohtsuka, T. Ukai, and N. Mori, On the Orbital Moment of Co in YCo5, J. Magn. Magn. Mater. 70, 189 (1987).
  17. A. C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, England, 1993).
  18. J. B. Goodenough, Magnetism and the Chemical Bond (Interscience-Wiley, New York, 1963).
  19. I. Yang, S. Y. Savrasov, and G. Kotliar, Importance of Correlation Effects on Magnetic Anisotropy in Fe and Ni, Phys. Rev. Lett. 87, 216405 (2001).
  20. G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C. A. Marianetti, Electronic Structure Calculations with Dynamical Mean-Field Theory, Rev. Mod. Phys. 78, 865 (2006).
  21. M. E. Pezzoli, K. Haule, and G. Kotliar, Neutron Magnetic Form Factor in Strongly Correlated Materials, Phys. Rev. Lett. 106, 016403 (2011).
  22. A. Grechnev, I. D. Marco, M. I. Katsnelson, A. I. Lichtenstein, J. Wills, and O. Eriksson, Theory of Bulk and Surface Quasiparticle Spectra for Fe, Co, and Ni, Phys. Rev. B 76, 035107 (2007).
  23. S. Chadov, J.Minár, M. I. Katsnelson, H. Ebert, D. Ködderitzsch, and A. I. Lichtenstein, Orbital Magnetism in Transition Metal Systems: The Role of Local Correlation Effects, Europhys. Lett. 82, 37001 (2008).
  24. R. M. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, Cambridge, England, 2004).
  25. R. D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, Berkeley, 1981).
  26. M. Czyzyk and G. A. Sawatzky, Local-Density Functional and On-Site Correlations: The Electronic Structure of La2CuO4 and LaCuO3, Phys. Rev. B 49, 14 211 (1994).
  27. J. H. Shim, K. Haule, and G. Kotliar, Fluctuating Valence in a Correlated Solid and the Anomalous Properties of δ Plutonium, Nature (London) 446, 513 (2007).
  28. J.-X. Zhu, R. C. Albers, K. Haule, G. Kotliar, and J. M. Wills, Site-Selective Electronic Correlation in α-Plutonium Metal, Nat. Commun. 4, 2644 (2013).
  29. V. I. Anisimov, A. I. Poteryaev, M. A. Korotin, A. O. Anokhin, and G. Kotliar, First-Principles Calculations of the Electronic Structure and Spectra of Strongly Correlated Systems: Dynamical Mean-Field Theory, J. Phys. Condens. Matter 9, 7359 (1997).
  30. L. Craco, M. S. Laad, S. Leoni, and E. Müller-Hartmann, Insulator-Metal Transition in the Doped 3d1 Transition Metal Oxide LaTiO3, Phys. Rev. B 70, 195116 (2004).
  31. K. Held, G. Keller, V. Eyert, D. Vollhardt, and V. I. Anisimov, MottHubbard Metal-Insulator Transition in Paramagnetic V2O3: An LDA+DMFT(QMC) Study, Phys. Rev. Lett. 86, 5345 (2001).
  32. M. S. Laad, L. Craco, and E. Müller-Hartmann, Orbital Switching and the First-Order Insulator-Metal Transition in Paramagnetic V2O3, Phys. Rev. Lett. 91, 156402 (2003).
  33. L. V. Pourovskii, M. I. Katsnelson, and A. I. Lichtenstein, Correlation Effects in Electronic Structure of Actinide Monochalcogenides, Phys. Rev. B 72, 115106 (2005).
  34. J. M. Wills and B. R. Cooper, Synthesis of Band and Model Hamiltonian Theory for Hybridizing Cerium Systems, Phys. Rev. B 36, 3809 (1987).
  35. O. Grånäs, I. D. Marco, P. Thunström, L. Nordström, O. Eriksson, T. Björkman, and J. M. Wills, Charge Self-Consistent Dynamical Mean-Field Theory Based on the Full-Potential Linear Muffin-Tin Orbital Method: Methodology and Applications, J. Comput. Math. Sci. Teach. 55, 295 (2012).
  36. Full-Potential Electronic Structure Method: Energy and Force Calculations with Density Functional and Dynamical Mean Field Theory, edited by J. M. Wills, O. Eriksson, M. Alouani, and D. L. Price (Springer-Verlag, Berlin, 2010).
  37. Permanent Magnetism, edited by R. Skomski and J. M. D. Coey (Taylor and Francis, New York, 1999).
  38. J. F. Herbst, J. J. Croat, F. E. Pinkerton, and W. B. Yelon, Relationships between Crystal Structure and Magnetic Properties in Nd2Fe14B, Phys. Rev. B 29, 4176 (1984).
  39. J. J. Croat, J. F. Herbst, R. W. Lee, and F. E. Pinkerton, PrFe and NdFe Based Materials: A New Class of High Performance Permanent Magnets, J. Appl. Phys. 55, 2078 (1984).
  40. M. Colarieti-Tosti, S. I. Simak, R. Ahuja, L. Nordström, O. Eriksson, D. Aberg, S. Edvardsson, and M. S. S. Brooks, Origin of Magnetic Anisotropy of Gd Metal, Phys. Rev. Lett. 91, 157201 (2003).
  41. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).
  42. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k: An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties (Technische Universitat Vienna, Vienna, 2001).
  43. B. T. Thole, P. Carra, F. Sette, and G. van der Lann, X-Ray Circular Dichroism as a Probe of Orbital Magnetization, Phys. Rev. Lett. 68, 1943 (1992).
  44. P. Carra, B. T. Thole, M. Altarelli, and X. Wang, X-Ray Circular Dichroism and Local Magnetic Fields, Phys. Rev. Lett. 70, 694 (1993).

Outline

Information

Sign In to Your Journals Account

Filter

Filter

Article Lookup

Enter a citation

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载