+

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

  • Open Access

Generalized King linearity and new physics searches with isotope shifts

Julian C. Berengut1,*, Cédric Delaunay2,†, Amy Geddes1,‡, and Yotam Soreq3,§

  • 1School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia
  • 2Laboratoire d'Annecy-le-Vieux de Physique Théorique LAPTh, CNRS – Université Savoie Mont Blanc, BP 110, F-74941 Annecy-le-Vieux, France
  • 3Physics Department, Technion—Israel Institute of Technology, Haifa 3200003, Israel
  • *julian.berengut@unsw.edu.au
  • cedric.delaunay@lapth.cnrs.fr
  • a.geddes@unsw.edu.au
  • §soreqy@physics.technion.ac.il

Phys. Rev. Research 2, 043444 – Published 31 December, 2020

DOI: https://doi.org/10.1103/PhysRevResearch.2.043444

Abstract

Atomic spectral lines for different isotopes are shifted, revealing a change in the properties of the nucleus. For spinless nuclei such isotope shifts for two distinct transitions are expected to be linearly related, at least at leading order in a change of the nuclear mass and charge distribution. Looking for a breaking of linearity in so-called King plots was proposed as a novel method to search for physics beyond the standard model. In the light of the recent experimental progress in isotope shift spectroscopy, the sensitivity of these searches will become limited by the determination of the isotope masses and/or by nuclear effects which may induce nonlinearities at an observable level. In this work, we propose two possible generalizations of the traditional King plot that overcome these limitations by including additional isotope shift measurements, thus significantly extending the new physics reach of King plots in a purely spectroscopy-driven approach.

Physics Subject Headings (PhySH)

Article Text

References (73)

  1. A. Davidson and K. C. Wali, minimal Flavor Unification Via Multigenerational Peccei-Quinn Symmetry, Phys. Rev. Lett. 48, 11 (1982).
  2. F. Wilczek, Axions and Family Symmetry Breaking, Phys. Rev. Lett. 49, 1549 (1982).
  3. G. B. Gelmini, S. Nussinov, and T. Yanagida, Does Nature Like Nambu-Goldstone Bosons? Nucl. Phys. B 219, 31 (1983).
  4. J. E. Kim, Light pseudoscalars, particle physics and cosmology, Phys. Rep. 150, 1 (1987).
  5. J. L. Feng, T. Moroi, H. Murayama, and E. Schnapka, Third generation familons, b factories, and neutrino cosmology, Phys. Rev. D 57, 5875 (1998).
  6. P. W. Graham, D. E. Kaplan, and S. Rajendran, Cosmological Relaxation of the Electroweak Scale, Phys. Rev. Lett. 115, 221801 (2015).
  7. R. S. Gupta, Z. Komargodski, G. Perez, and L. Ubaldi, Is the relaxion an axion? J. High Energy Phys. 02 (2016) 166.
  8. T. Flacke, C. Frugiuele, E. Fuchs, R. S. Gupta, and G. Perez, Phenomenology of relaxion-Higgs mixing, J. High Energy Phys. 06 (2017) 050.
  9. C. Frugiuele, E. Fuchs, G. Perez, and M. Schlaffer, Relaxion and light (pseudo)scalars at the HL-LHC and lepton colliders, J. High Energy Phys. 10 (2018) 151.
  10. A. Banerjee, H. Kim, O. Matsedonskyi, G. Perez, and M. S. Safronova, Probing the relaxed relaxion at the luminosity and precision frontiers, J. High Energy Phys. 07 (2020) 153.
  11. J. S. M. Ginges and V. V. Flambaum, Violations of fundamental symmetries in atoms and tests of unification theories of elementary particles, Phys. Rep. 397, 63 (2004).
  12. S. G. Karshenboim, Precision physics of simple atoms: QED tests, nuclear structure and fundamental constants, Phys. Rep. 422, 1 (2005).
  13. M. S. Safronova, D. Budker, D. DeMille, D. F. J. Kimball, A. Derevianko, and C. W. Clark, Search for new physics with atoms and molecules, Rev. Mod. Phys. 90, 025008 (2018).
  14. V. Andreev et al. (ACME Collaboration), Improved limit on the electric dipole moment of the electron, Nature (London) 562, 355 (2018).
  15. J. Baron et al. (ACME Collaboration), Order of magnitude smaller limit on the electric dipole moment of the electron, Science 343, 269 (2014).
  16. D. Hanneke, S. Fogwell, and G. Gabrielse, New Measurement of the Electron Magnetic Moment and the Fine Structure Constant, Phys. Rev. Lett. 100, 120801 (2008).
  17. C. S. Wood, S. C. Bennett, D. Cho, B. P. Masterson, J. L. Roberts, C. E. Tanner, and C. E. Wieman, Measurement of parity nonconservation and an anapole moment in cesium, Science 275, 1759 (1997).
  18. J. Guena, M. Lintz, and M. A. Bouchiat, Measurement of the parity violating 6S-7S transition amplitude in cesium achieved within 2 x 10(-13) atomic-unit accuracy by stimulated-emission detection, Phys. Rev. A 71, 042108 (2005).
  19. C. Frugiuele, J. Pérez-Ríos, and C. Peset, Current and future perspectives of positronium and muonium spectroscopy as dark sectors probe, Phys. Rev. D 100, 015010 (2019).
  20. K. Pachucki, V. Patkóš, and V. Yerokhin, Testing fundamental interactions on the helium atom, Phys. Rev. A 95, 062510 (2017).
  21. S. G. Karshenboim, Precise physics of simple atoms, in XVII International Conference on Atomic Physics; ICAP 2000, edited by P. De Natale, E. Arimondo, and M. Inguscio, AIP Conf. Proc. No. 551 (AIP, New York, 2001), p. 238.
  22. C. Delaunay, R. Ozeri, G. Perez, and Y. Soreq, Probing atomic Higgs-like forces at the precision frontier, Phys. Rev. D 96, 093001 (2017).
  23. W. H. King, Comments on the article “peculiarities of the isotope shift in the samarium spectrum”, J. Opt. Soc. Am. 53, 638 (1963).
  24. J. C. Berengut et al., Probing New Long-Range Interactions by Isotope Shift Spectroscopy, Phys. Rev. Lett. 120, 091801 (2018).
  25. C. Frugiuele, E. Fuchs, G. Perez, and M. Schlaffer, Constraining new physics models with isotope shift spectroscopy, Phys. Rev. D 96, 015011 (2017).
  26. F. W. Knollmann, A. N. Patel, and S. C. Doret, Part-per-billion measurement of the 4S1/2232D5/2 electric quadrupole transition isotope shifts between Ca+42,44,48 and Ca+40, Phys. Rev. A 100, 022514 (2019).
  27. T. Manovitz, R. Shaniv, Y. Shapira, R. Ozeri, and N. Akerman, Precision Measurement of Atomic Isotope Shifts using a Two-Isotope Entangled State, Phys. Rev. Lett. 123, 203001 (2019).
  28. G. Audi, F. G. Kondev, M. Wang, W. Huang, and S. Naimi, The NUBASE2016 evaluation of nuclear properties, Chin. Phys. C 41, 030001 (2017).
  29. M. Wang, G. Audi, F. G. Kondev, W. Huang, S. Naimi, and X. Xu, The AME2016 atomic mass evaluation (II). tables, graphs and references, Chin. Phys. C 41, 030003 (2017).
  30. V. V. Flambaum, A. J. Geddes, and A. V. Viatkina, Isotope shift, nonlinearity of King plots, and the search for new particles, Phys. Rev. A 97, 032510 (2018).
  31. V. Yerokhin, R. Müller, A. Surzhykov, P. Micke, and P. Schmidt, Nonlinear isotope-shift effects in Be-like, B-like, and C-like argon, Phys. Rev. A 101, 012502 (2020).
  32. I. Counts, J. Hur, D. P. L. Aude Craik, H. Jeon, C. Leung, J. C. Berengut, A. Geddes, A. Kawasaki, W. Jhe, and V. Vuletić, Observation of 3σ Nonlinear Isotope Shift in Yb+ Search for New Boson, Phys. Rev. Lett. 125, 123002 (2020).
  33. C. Solaro, S. Meyer, K. Fisher, J. C. Berengut, E. Fuchs, and M. Drewsen, Improved Isotope-Shift-Based Bounds on Bosons Beyond the Standard Model Through Measurements of the D3/22D5/22 Interval in Ca+, Phys. Rev. Lett. 125, 123003 (2020).
  34. F. Gebert, Y. Wan, F. Wolf, C. N. Angstmann, J. C. Berengut, and P. O. Schmidt, Precision Isotope Shift Measurements in Calcium Ions using Quantum Logic Detection Schemes, Phys. Rev. Lett. 115, 053003 (2015).
  35. K. Mikami, M. Tanaka, and Y. Yamamoto, Probing new intra-atomic force with isotope shifts, Eur. Phys. J. C 77, 896 (2017).
  36. W. H. King, Isotope Shifts in Atomic Spectra (Springer Science & Business Media, 2013).
  37. J. A. R. Griffith, G. R. Isaak, R. New, M. P. Ralls, and C. P. van Zyl, Anomalies in the optical isotope shifts of samarium, J. Phys. B 12, L1 (1979).
  38. J. A. R. Griffith, G. R. Isaak, R. New, and M. P. Ralls, Anomalies in the optical isotope shifts of samarium, J. Phys. B 14, 2769 (1981).
  39. C. W. P. Palmer and D. N. Stacey, Theory of anomalous isotope shifts in samarium, J. Phys. B 15, 997 (1982).
  40. H. Miyake, N. C. Pisenti, P. K. Elgee, A. Sitaram, and G. K. Campbell, Isotope shift spectroscopy of the 1s03p1 and 1s03p0 transitions in strontium, Phys. Rev. Research 1, 033113 (2019).
  41. E. C. Seltzer, K X-Ray isotope shifts, Phys. Rev. 188, 1916 (1969).
  42. A. Migdal, Quadrupole and dipole gamma-radiation of nuclei, Zh. Eksp. Teor. Fiz. 15, 81 (1945).
  43. J. Levinger, Migdal's and Khokhlov's calculations of the nuclear photoeffect, Phys. Rev. 107, 554 (1957).
  44. C. Palmer, Reformulation of the theory of the mass shift, J. Phys. B 20, 5987 (1987).
  45. C. Tamm, S. Weyers, B. Lipphardt, and E. Peik, Stray-field-induced quadrupole shift and absolute frequency of the 688-THz 171 Yb+ single-ion optical frequency standard, Phys. Rev A 80, 043403 (2009).
  46. N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, and E. Peik, Improved Limit on a Temporal Variation of mp/me from Comparisons of Yb+ and Cs Atomic Clocks, Phys. Rev. Lett. 113, 210802 (2014).
  47. R. Brown et al., Hyperpolarizability and Operational Magic Wavelength in an Optical Lattice Clock, Phys. Rev. Lett. 119, 253001 (2017).
  48. M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, Ultrastable optical clock with two cold-atom ensembles, Nat. Photonics 11, 48 (2017).
  49. M. Safronova, S. Porsev, C. Sanner, and J. Ye, Two Clock Transitions in Neutral Yb for the Highest Sensitivity to Variations of the Fine-Structure Constant, Phys. Rev. Lett. 120, 173001 (2018).
  50. E. Kahl and J. Berengut, ambit: A programme for high-precision relativistic atomic structure calculations, Comput. Phys. Commun. 238, 232 (2019).
  51. A. Kramida, Y. Ralchenko, and J. Reader, Nist atomic spectra database (version 5.6.1), https://www.nist.gov/pml/atomic-spectra-database.
  52. I. Angeli and K. Marinova, Table of experimental nuclear ground state charge radii: An update, At. Data Nucl. Data Tables 99, 69 (2013)
  53. M. Bordag, U. Mohideen, and V. M. Mostepanenko, New developments in the Casimir effect, Phys. Rept. 353, 1 (2001).
  54. M. Bordag, G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, Advances in the Casimir effect, Int. Ser. Monogr. Phys. 145, 1 (2009).
  55. S. L. Adler, R. F. Dashen, and S. B. Treiman, Comments on proposed explanations for the μ - Mesic atom x-ray discrepancy, Phys. Rev. D 10, 3728 (1974).
  56. R. Barbieri and T. E. O. Ericson, Evidence Against the Existence of a Low Mass Scalar Boson from Neutron-Nucleus Scattering, Phys. Lett. B 57, 270 (1975).
  57. H. Leeb and J. Schmiedmayer, Constraint on Hypothetical Light Interacting Bosons from Low-Energy Neutron Experiments, Phys. Rev. Lett. 68, 1472 (1992).
  58. V. V. Nesvizhevsky, G. Pignol, and K. V. Protasov, Neutron scattering and extra short range interactions, Phys. Rev. D 77, 034020 (2008).
  59. Yu. N. Pokotilovski, Constraints on new interactions from neutron scattering experiments, Phys. Atom. Nucl. 69, 924 (2006).
  60. C. Delaunay, C. Frugiuele, E. Fuchs, and Y. Soreq, Probing new spin-independent interactions through precision spectroscopy in atoms with few electrons, Phys. Rev. D 96, 115002 (2017).
  61. E. Hardy and R. Lasenby, Stellar cooling bounds on new light particles: Plasma mixing effects, J. High Energy Phys. 02 (2017) 033.
  62. N. Bar, K. Blum, and G. D'amico, Is there a supernova bound on axions? Phys. Rev. D 101, 123025 (2020).
  63. G. Raffelt, Limits on a CP-violating scalar axion-nucleon interaction, Phys. Rev. D 86, 015001 (2012).
  64. T. Kitahara, T. Okui, G. Perez, Y. Soreq, and K. Tobioka, New Physics Implications of Recent Search for KLπ0νν¯ at KOTO, Phys. Rev. Lett. 124, 071801 (2020).
  65. S. Shinohara, Search for the rare decay KLπ0νν¯ at J-PARC KOTO experiment, https://indico.cern.ch/event/769729/contributions/3510939/attachments/1904988/3145907/KAON2019_shinohara_upload.pdf. KAON2019, Perugia, Italy, 10-13 September 2019.
  66. P. B. Dev, R. N. Mohapatra, and Y. Zhang, Constraints on long-lived light scalars with flavor-changing couplings and the KOTO anomaly, Phys. Rev. D 101, 075014 (2020).
  67. G. Perez, Y. Soreq, E. Stamou, and K. Tobioka, Constraining the charm Yukawa and Higgs-quark coupling universality, Phys. Rev. D 92, 033016 (2015).
  68. Y. Zhou, Constraining the Higgs boson coupling to light quarks in the HZZ final states, Phys. Rev. D 93, 013019 (2016).
  69. A. Dery, C. Frugiuele, and Y. Nir, Large Higgs-electron Yukawa coupling in 2HDM, J. High Energy Phys. 04 (2018) 044.
  70. W. Altmannshofer, J. Brod, and M. Schmaltz, Experimental constraints on the coupling of the Higgs boson to electrons, J. High Energy Phys. 05 (2015) 125.
  71. P. Micke, T. Leopold, S. A. King, E. Benkler, L. J. Spieß, L. Schmöger, M. Schwarz, J. R. Crespo López-Urrutia, and P. O. Schmidt, Coherent laser spectroscopy of highly charged ions using quantum logic, Nature (London) 578, 60 (2020).
  72. P. Bogdanovich and G. Žukauskas, Approximate allowance for superposition of configurations in atomic spectra, Sov. Phys. Collect 23, 13 (1983).
  73. K. Beloy and A. Derevianko, Application of the dual-kinetic-balance sets in the relativistic many-body problem of atomic structure, Comput. Phys. Commun. 179, 310 (2008).

Outline

Information

Sign In to Your Journals Account

Filter

Filter

Article Lookup

Enter a citation

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载