+
  • Accepted Paper

Streamline-controlled rectification of supercurrent in thin-film asymmetric weak links

F. Antola, S. Battisti, A. Braggio, F. Giazotto, and G. De Simoni

Phys. Rev. Applied - Accepted 4 November, 2025

DOI: https://doi.org/10.1103/t8qr-m2v3

Abstract

In this study, we examined the supercurrent diode effect (SDE) in mesoscopic superconducting weak links formed by asymmetric Dayem bridges. These planar metallic constrictions, which naturally exhibit Josephson-like behavior, offer a fundamental platform for investigating nonreciprocal transport phenomena in a regime where the bridge width aligns with the superconducting coherence length (Wξ). The foundational concept is inspired by the Tesla valve, a classical fluidic device that achieves flow rectification through interference and turbulence between fluid streams enabled by geometric asymmetry. Analogously, we demonstrate that spatial asymmetry within superconducting structures can result in rectification due to the polarity-dependent interaction between transport and screening currents. By implementing controlled geometric defects at the junction between the constriction and superconducting leads, we induce current crowding and disrupt spatial inversion symmetry, thus facilitating directional switching behavior. Experimental results indicate a linear-in-field rectification regime at low magnetic fields, driven by the interaction between transport and screening currents, which is succeeded by complex vortex dynamics within the superconducting banks at elevated fields. Time-dependent Ginzburg-Landau simulations replicate significant features of the experimental observations and substantiate the influence of both screening currents and rearrangements of Abrikosov vortices. A comparative study across various geometries highlights the crucial role of defect shape and spatial confinement in determining the rectification efficiency, revealing a minimum threshold in bridge width below which crowding-induced SDE is significantly reduced. Our findings advocate for mesoscopic Dayem bridges as a flexible platform for designing and controlling superconducting diode functionalities.

Sign In to Your Journals Account

Filter

Filter

Article Lookup

Enter a citation

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载