The use of genetically engineered tools, including combinations of Cre-LoxP and Flp-FRT systems, enables the interrogation of complex biology. Steroidogenic factor-1 (SF-1) is expressed in the ventromedial hypothalamic nucleus (VMH). Development of genetic tools, such as mice expressing Flp recombinase (Flp) in SF-1 neurons (Sf-1-Flp), will be useful for future studies that unravel the complex physiology regulated by the VMH. Here, we developed and characterized Sf-1-Flp mice and demonstrated their utility. The Flp sequence was inserted into the Sf-1 locus with P2A. This insertion did not affect Sf-1 mRNA expression levels and Sf-1-Flp mice do not have any visible phenotypes. They are fertile and metabolically comparable to wild-type littermate mice. Optogenetic stimulation using adeno-associated virus (AAV) carrying Flp-dependent channelrhodopsin-2 (ChR2) increased blood glucose and skeletal muscle PGC-1α in Sf-1-Flp mice. This was similar to SF-1 neuronal activation using Sf-1-BAC-Cre and AAV carrying Cre-dependent ChR2. Finally, we generated Sf-1-Flp mice that lack β2-adrenergic receptors (Adrb2) only in skeletal muscle with a combination of Cre/LoxP technology (Sf-1-Flp:SKMΔAdrb2). Optogenetic stimulation of SF-1 neurons failed to increase skeletal muscle PGC-1α in Sf-1-Flp:SKMΔAdrb2 mice, suggesting that Adrb2 in skeletal muscle is required for augmented skeletal muscle PGC-1α by SF-1 neuronal activation. Our data demonstrate that Sf-1-Flp mice are useful for interrogating complex physiology.
Marco Galvan, Mina Fujitani, Samuel R. Heaselgrave, Shreya Thomas, Bandy Chen, Jenny J. Lee, Steven C. Wyler, Joel K. Elmquist, Teppei Fujikawa
Generation of