+
Skip to content
/ LIP Public
forked from xherdan76/LIP

[ICLR 2024] Latent Intuitive Physics: Learning to Transfer Hidden Physics from a 3D Video

Notifications You must be signed in to change notification settings

qiwang067/LIP

 
 

Repository files navigation

Latent Intuitive Physics: Learning to Transfer Hidden Physics from A 3D Video

Project Page | Paper

Code for our paper: Latent Intuitive Physics: Learning to Transfer Hidden Physics from A 3D Video.

Xiangming Zhu, Huayu Deng, Haochen Yuan, Yunbo Wang, Xiaokang Yang

ICLR 2024

lip

Dependencies

  1. Create an environment

    conda create -n lip-env python=3.9
    conda activate lip-env
  2. PyTorch and PyTorch3D

    Install PyTorch and PyTorch3D following the official guide.

    conda install pytorch=1.13.0 torchvision pytorch-cuda=11.6 -c pytorch -c nvidia
    conda install -c fvcore -c iopath -c conda-forge fvcore iopath
    conda install -c bottler nvidiacub
    conda install pytorch3d -c pytorch3d
  3. Other dependencies

    pip install -r requirements.txt

Fetch data

Download the data and pretrained checkpoints from Google Drive and place them under ./data and ./pretrained_ckpts.

Run the training script

  • Stage B: Visual posterior inference
python train_lip.py --expdir exps/cuboid_2000_0.065/stageB \
                            --expname latent1e-4 \
                            --config configs/stageB/cuboid.yaml \
                            --dataset cuboid_2000_0.065
  • Stage C: Physical prior adaptation
python train_lip.py --expdir exps/cuboid_2000_0.065/stageC \
                            --expname encoder1e-4/ \
                            --config configs/stageC/cuboid.yaml \
                            --dataset cuboid_2000_0.065

Citation

If you find our work helps, please cite our paper.

@inproceedings{zhu2024lip,
  author={Zhu, Xiangming and Deng, Huayu and Yuan, Haochen and Wang, Yunbo and Yang, Xiaokang},
  title={Latent Intuitive Physics: Learning to Transfer Hidden Physics from a 3D Video},
  booktitle = {International Conference on Learning Representations},
  year={2024}
}

Acknowledgement

The implementation is based on the following repos:

https://github.com/syguan96/NeuroFluid

https://github.com/isl-org/DeepLagrangianFluids

About

[ICLR 2024] Latent Intuitive Physics: Learning to Transfer Hidden Physics from a 3D Video

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.7%
  • Shell 0.3%
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载