Latent Intuitive Physics: Learning to Transfer Hidden Physics from A 3D Video
Code for our paper: Latent Intuitive Physics: Learning to Transfer Hidden Physics from A 3D Video.
Xiangming Zhu, Huayu Deng, Haochen Yuan, Yunbo Wang†, Xiaokang Yang
ICLR 2024
-
Create an environment
conda create -n lip-env python=3.9 conda activate lip-env
-
PyTorch and PyTorch3D
Install PyTorch and PyTorch3D following the official guide.
conda install pytorch=1.13.0 torchvision pytorch-cuda=11.6 -c pytorch -c nvidia conda install -c fvcore -c iopath -c conda-forge fvcore iopath conda install -c bottler nvidiacub conda install pytorch3d -c pytorch3d
-
Other dependencies
pip install -r requirements.txt
Download the data and pretrained checkpoints from Google Drive and place them under ./data
and ./pretrained_ckpts
.
- Stage B: Visual posterior inference
python train_lip.py --expdir exps/cuboid_2000_0.065/stageB \
--expname latent1e-4 \
--config configs/stageB/cuboid.yaml \
--dataset cuboid_2000_0.065
- Stage C: Physical prior adaptation
python train_lip.py --expdir exps/cuboid_2000_0.065/stageC \
--expname encoder1e-4/ \
--config configs/stageC/cuboid.yaml \
--dataset cuboid_2000_0.065
If you find our work helps, please cite our paper.
@inproceedings{zhu2024lip,
author={Zhu, Xiangming and Deng, Huayu and Yuan, Haochen and Wang, Yunbo and Yang, Xiaokang},
title={Latent Intuitive Physics: Learning to Transfer Hidden Physics from a 3D Video},
booktitle = {International Conference on Learning Representations},
year={2024}
}
The implementation is based on the following repos: