+
Skip to content

pysal/mgwr

Repository files navigation

Multiscale Geographically Weighted Regression (MGWR)

Build Status Documentation Status PyPI version

This module provides functionality to calibrate multiscale (M)GWR as well as traditional GWR. It is built upon the sparse generalized linear modeling (spglm) module.

Features

  • GWR model calibration via iteratively weighted least squares for Gaussian, Poisson, and binomial probability models.
  • GWR bandwidth selection via golden section search or equal interval search
  • GWR-specific model diagnostics, including a multiple hypothesis test correction and local collinearity
  • Monte Carlo test for spatial variability of parameter estimate surfaces
  • GWR-based spatial prediction
  • MGWR model calibration via GAM iterative backfitting for Gaussian model
  • Parallel computing for GWR and MGWR
  • MGWR covariate-specific inference, including a multiple hypothesis test correction and local collinearity
  • Bandwidth confidence intervals for GWR and MGWR

Citation

Oshan, T. M., Li, Z., Kang, W., Wolf, L. J., & Fotheringham, A. S. (2019). mgwr: A Python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale. ISPRS International Journal of Geo-Information, 8(6), 269.

About

Multiscale Geographically Weighted Regression (MGWR)

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 11

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载