+
Skip to content

Implement reshape cuda kernel (resolves #336) #356

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Jan 12, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
82 changes: 73 additions & 9 deletions src/tensor_ops/reshape_to/cuda_kernel.rs
Original file line number Diff line number Diff line change
@@ -1,26 +1,90 @@
use crate::shapes::{Dtype, HasSameNumelAs, Shape};
use crate::tensor::Cuda;
use crate::{
shapes::{Dtype, HasSameNumelAs, Shape},
tensor::cuda::{Cuda, CudaArray},
tensor_ops::ops::{BinaryKernel, UnaryKernel},
};
use cudarc::device::{AsKernelParam, CudaSlice, LaunchAsync, LaunchConfig, ValidAsZeroBits};
use std::sync::Arc;

impl<E: Dtype> super::ReshapeKernel<E> for Cuda {
const PTX_SRC: &str = include_str!(concat!(env!("OUT_DIR"), "/reshape.ptx"));
const MODULE_NAME: &str = "reshape";
const FWD_FN_NAME: &str = "reshape_forward";
const BWD_FN_NAME: &str = "reshape_backward";
const ALL_FN_NAMES: [&str; 2] = [FWD_FN_NAME, BWD_FN_NAME];

impl super::ReshapeKernel<f32> for Cuda {
fn forward<Src: Shape, Dst: Shape>(
&self,
dst: Dst,
inp: &Self::Storage<Src, E>,
) -> Result<Self::Storage<Dst, E>, Self::Err>
inp: &Self::Storage<Src, f32>,
) -> Result<Self::Storage<Dst, f32>, Self::Err>
where
Src: HasSameNumelAs<Dst>,
{
todo!()
if !self.dev.has_func(MODULE_NAME, FWD_FN_NAME) {
self.dev
.load_ptx(PTX_SRC.into(), MODULE_NAME, &ALL_FN_NAMES)?;
}

let numel = inp.data.len();
let mut storage = self.dev.alloc_zeros_async::<f32>(numel)?;

let inp_dims: CudaSlice<usize> = self.dev.take_async(inp.shape.concrete().into())?;
let dst_dims: CudaSlice<usize> = self.dev.take_async(dst.concrete().into())?;
let inp_strides: CudaSlice<usize> = self.dev.take_async(inp.strides.into())?;
let dst_strides: CudaSlice<usize> = self.dev.take_async(dst.strides().into())?;

let fwd_fn = self.dev.get_func(MODULE_NAME, FWD_FN_NAME).unwrap();
let cfg = LaunchConfig::for_num_elems(numel as u32);
let params = (
numel, // const size_t numel,
inp.data.as_ref(), // const float *inp,
Src::NUM_DIMS, // const size_t inp_num_dims,
&inp_dims, // const size_t *inp_dims,
&inp_strides, // const size_t *inp_strides,
&mut storage, // float *out
Dst::NUM_DIMS, // const size_t out_num_dims,
&dst_dims, // const size_t *out_dims,
&dst_strides // const size_t *out_strides,
);
unsafe { fwd_fn.launch_async(cfg, params) }?;

Ok(CudaArray {
data: Arc::new(storage),
shape: dst,
strides: dst.strides(),
})
}

fn backward<Src: Shape, Dst: Shape>(
&self,
grad_inp: &mut Self::Storage<Src, E>,
grad_out: &Self::Storage<Dst, E>,
grad_inp: &mut Self::Storage<Src, f32>,
grad_out: &Self::Storage<Dst, f32>,
) -> Result<(), Self::Err>
where
Src: HasSameNumelAs<Dst>,
{
todo!()
let bwd_fn = self.dev.get_func(MODULE_NAME, BWD_FN_NAME).unwrap();
let numel = grad_inp.data.len();

let inp_dims: CudaSlice<usize> = self.dev.take_async(grad_inp.shape.concrete().into())?;
let out_dims: CudaSlice<usize> = self.dev.take_async(grad_out.shape.concrete().into())?;
let inp_strides: CudaSlice<usize> = self.dev.take_async(grad_inp.strides.into())?;
let out_strides: CudaSlice<usize> = self.dev.take_async(grad_out.strides.into())?;

let cfg = LaunchConfig::for_num_elems(numel as u32);
let params = (
numel, // const size_t numel,
Arc::make_mut(&mut grad_inp.data), // float *grad_inp,
Src::NUM_DIMS, // const size_t inp_num_dims,
&inp_dims, // const size_t *inp_dims,
&inp_strides, // const size_t *inp_strides,
grad_out.data.as_ref(), // const float *grad_out,
Dst::NUM_DIMS, // const size_t out_num_dims,
&out_dims, // const size_t *out_dims,
&out_strides, // const size_t *out_strides
);
unsafe { bwd_fn.launch_async(cfg, params) }?;
Ok(())
}
}
58 changes: 58 additions & 0 deletions src/tensor_ops/reshape_to/reshape.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
__device__ unsigned int get_strided_index(
unsigned int idx,
const size_t num_dims,
const size_t *dims,
const size_t *strides
) {
unsigned int strided_i = 0;
for (unsigned int d = 0; d < num_dims; d++) {
unsigned int dim_idx = num_dims - 1 - d;
strided_i += (idx % dims[dim_idx]) * strides[dim_idx];
idx /= dims[dim_idx];
}
return strided_i;
}

extern "C" __global__ void reshape_forward(
const size_t numel,
const float *inp,
const size_t inp_num_dims,
const size_t *inp_dims,
const size_t *inp_strides,
float *out,
const size_t out_num_dims,
const size_t *out_dims,
const size_t *out_strides
) {
unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i >= numel) {
return;
}

unsigned int inp_i = get_strided_index(i, inp_num_dims, inp_dims, inp_strides);
unsigned int out_i = get_strided_index(i, out_num_dims, out_dims, out_strides);

out[out_i] = inp[inp_i];
}

extern "C" __global__ void reshape_backward(
const size_t numel,
float *grad_inp,
const size_t inp_num_dims,
const size_t *inp_dims,
const size_t *inp_strides,
const float *grad_out,
const size_t out_num_dims,
const size_t *out_dims,
const size_t *out_strides
) {
unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i >= numel) {
return;
}

unsigned int inp_i = get_strided_index(i, inp_num_dims, inp_dims, inp_strides);
unsigned int out_i = get_strided_index(i, out_num_dims, out_dims, out_strides);

atomicAdd(grad_inp + inp_i, grad_out[out_i]);
}
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载