+
Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
238 changes: 238 additions & 0 deletions src/nn/add_into.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,238 @@
use crate::gradients::{CanUpdateWithGradients, GradientProvider, UnusedTensors};
use crate::prelude::*;

/// Add inputs together into a single tensor. `T` should be a tuple
//// where every element of the tuple has the same output type
///
/// This provides a utility for networks where multiple inputs are needed
///
/// # Generics
/// - `T` the module to add the outputs together of
///
/// # Examples
/// ```rust
/// # use dfdx::prelude::*;
/// type Model = AddInto<(Linear<2, 5>, Linear<3, 5>)>;
/// let model: Model = Default::default();
/// let _: Tensor1D<5> = model.forward((Tensor1D::<2>::zeros(), Tensor1D::<3>::zeros()));
/// ```
#[derive(Debug, Default, Clone)]
pub struct AddInto<T>(pub T);

impl<T: CanUpdateWithGradients> CanUpdateWithGradients for AddInto<T> {
fn update<G: GradientProvider>(&mut self, grads: &mut G, unused: &mut UnusedTensors) {
self.0.update(grads, unused);
}
}

impl<T: ResetParams> ResetParams for AddInto<T> {
fn reset_params<R: rand::Rng>(&mut self, rng: &mut R) {
self.0.reset_params(rng);
}
}

macro_rules! tuple_impls {
($head:ident $headin:ident [$($tails:ident $tailsin:ident),+]) => {
impl<
Output: Tensor<Dtype = f32>,
$headin: Tensor<Dtype = f32>,
$($tailsin: Tensor<Dtype = f32>,)+
$head: Module<$headin, Output = Output>,
$($tails: Module<$tailsin, Output = Output>,)+
> Module<($headin, $($tailsin,)+)> for AddInto<($head, $($tails,)+)> {
type Output = Output;

#[allow(non_snake_case)]
fn forward(&self, x: ($headin, $($tailsin,)+)) -> Self::Output {

// inputs
let ($head, $($tails),+) = x;

// layers
let ($headin, $($tailsin),+) = &self.0;

// forward
let ($head, $($tails),+) = ($headin.forward($head), $($tailsin.forward($tails)),+);

// add together
$(
let $head = add($head, $tails);
)+

$head
}
}


impl<
Output: Tensor<Dtype = f32>,
$headin: Tensor<Dtype = f32>,
$($tailsin: Tensor<Dtype = f32>,)+
$head: ModuleMut<$headin, Output = Output>,
$($tails: ModuleMut<$tailsin, Output = Output>,)+
> ModuleMut<($headin, $($tailsin,)+)> for AddInto<($head, $($tails,)+)> {
type Output = Output;

#[allow(non_snake_case)]
fn forward_mut(&mut self, x: ($headin, $($tailsin,)+)) -> Self::Output {

// inputs
let ($head, $($tails),+) = x;

// layers
let ($headin, $($tailsin),+) = &mut self.0;

// forward
let ($head, $($tails),+) = ($headin.forward_mut($head), $($tailsin.forward_mut($tails)),+);

// add together
$(
let $head = add($head, $tails);
)+

$head
}
} }
}

tuple_impls!(A Ai [B Bi]);
tuple_impls!(A Ai [B Bi, C Ci]);
tuple_impls!(A Ai [B Bi, C Ci, D Di]);
tuple_impls!(A Ai [B Bi, C Ci, D Di, E Ei]);
tuple_impls!(A Ai [B Bi, C Ci, D Di, E Ei, F Fi]);

#[cfg(test)]
mod tests {
use super::*;
use crate::{nn::tests::SimpleGradients, unique_id::HasUniqueId};

#[test]
fn test_add_into_2() {
type Model = AddInto<(Linear<2, 5>, Linear<3, 5>)>;
let m: Model = Default::default();
let _: Tensor1D<5, OwnedTape> =
m.forward((Tensor1D::zeros().traced(), Tensor1D::zeros().traced()));
let _: Tensor2D<3, 5, OwnedTape> = m.forward((
Tensor2D::<3, 2>::zeros().traced(),
Tensor2D::<3, 3>::zeros().traced(),
));
}

#[test]
fn test_add_into_3() {
type Model = AddInto<(Linear<2, 5>, Linear<3, 5>, Linear<4, 5>)>;
let m: Model = Default::default();
let _: Tensor1D<5, OwnedTape> = m.forward((
Tensor1D::zeros().traced(),
Tensor1D::zeros().traced(),
Tensor1D::zeros().traced(),
));
let _: Tensor2D<3, 5, OwnedTape> = m.forward((
Tensor2D::<3, 2>::zeros().traced(),
Tensor2D::<3, 3>::zeros().traced(),
Tensor2D::<3, 4>::zeros().traced(),
));
}

#[test]
fn test_add_into_4() {
type Model = AddInto<(Linear<2, 5>, Linear<3, 5>, Linear<4, 5>, Linear<5, 5>)>;
let m: Model = Default::default();
let _: Tensor1D<5, OwnedTape> = m.forward((
Tensor1D::zeros().traced(),
Tensor1D::zeros().traced(),
Tensor1D::zeros().traced(),
Tensor1D::zeros().traced(),
));
let _: Tensor2D<3, 5, OwnedTape> = m.forward((
Tensor2D::<3, 2>::zeros().traced(),
Tensor2D::<3, 3>::zeros().traced(),
Tensor2D::<3, 4>::zeros().traced(),
Tensor2D::<3, 5>::zeros().traced(),
));
}

#[test]
fn test_add_into_5() {
type Model = AddInto<(
Linear<2, 5>,
Linear<3, 5>,
Linear<4, 5>,
Linear<5, 5>,
Linear<6, 5>,
)>;
let m: Model = Default::default();
let _: Tensor1D<5, OwnedTape> = m.forward((
Tensor1D::zeros().traced(),
Tensor1D::zeros().traced(),
Tensor1D::zeros().traced(),
Tensor1D::zeros().traced(),
Tensor1D::zeros().traced(),
));
let _: Tensor2D<3, 5, OwnedTape> = m.forward((
Tensor2D::<3, 2>::zeros().traced(),
Tensor2D::<3, 3>::zeros().traced(),
Tensor2D::<3, 4>::zeros().traced(),
Tensor2D::<3, 5>::zeros().traced(),
Tensor2D::<3, 6>::zeros().traced(),
));
}

#[test]
fn test_add_into_6() {
type Model = AddInto<(
Linear<2, 5>,
Linear<3, 5>,
Linear<4, 5>,
Linear<5, 5>,
Linear<6, 5>,
Linear<7, 5>,
)>;
let m: Model = Default::default();
let _: Tensor1D<5, OwnedTape> = m.forward((
Tensor1D::zeros().traced(),
Tensor1D::zeros().traced(),
Tensor1D::zeros().traced(),
Tensor1D::zeros().traced(),
Tensor1D::zeros().traced(),
Tensor1D::zeros().traced(),
));
let _: Tensor2D<3, 5, OwnedTape> = m.forward((
Tensor2D::<3, 2>::zeros().traced(),
Tensor2D::<3, 3>::zeros().traced(),
Tensor2D::<3, 4>::zeros().traced(),
Tensor2D::<3, 5>::zeros().traced(),
Tensor2D::<3, 6>::zeros().traced(),
Tensor2D::<3, 7>::zeros().traced(),
));
}

#[test]
fn test_missing_gradients() {
let mut model: AddInto<(Linear<5, 3>, Linear<5, 3>)> = Default::default();
let mut g: SimpleGradients = Default::default();

// no gradients present
let mut unused = Default::default();
model.update(&mut g, &mut unused);
assert_eq!(
&unused.ids,
&[
*model.0 .0.weight.id(),
*model.0 .0.bias.id(),
*model.0 .1.weight.id(),
*model.0 .1.bias.id()
]
);

// weight gradient is present
g.0.mut_gradient(&model.0 .0.weight);
g.0.mut_gradient(&model.0 .0.bias);
g.0.mut_gradient(&model.0 .1.weight);
g.0.mut_gradient(&model.0 .1.bias);

let mut unused = Default::default();
model.update(&mut g, &mut unused);
assert!(unused.is_empty());
}
}
2 changes: 2 additions & 0 deletions src/nn/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -77,6 +77,7 @@
//! ```

mod activations;
mod add_into;
mod batchnorm2d;
mod conv;
mod dropout;
Expand All @@ -94,6 +95,7 @@ mod split_into;
mod transformer;

pub use activations::*;
pub use add_into::*;
pub use batchnorm2d::*;
pub use dropout::*;
pub use generalized_residual::*;
Expand Down
12 changes: 12 additions & 0 deletions src/nn/npz_impls.rs
Original file line number Diff line number Diff line change
Expand Up @@ -168,6 +168,18 @@ impl<T: LoadFromNpz> LoadFromNpz for SplitInto<T> {
}
}

impl<T: SaveToNpz> SaveToNpz for AddInto<T> {
fn write<W: Write + Seek>(&self, p: &str, w: &mut ZipWriter<W>) -> ZipResult<()> {
self.0.write(&format!("{p}.0"), w)
}
}

impl<T: LoadFromNpz> LoadFromNpz for AddInto<T> {
fn read<R: Read + Seek>(&mut self, p: &str, r: &mut ZipArchive<R>) -> Result<(), NpzError> {
self.0.read(&format!("{p}.0"), r)
}
}

impl<const M: usize, const H: usize, const F: usize, const L: usize> SaveToNpz
for TransformerDecoder<M, H, F, L>
{
Expand Down
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载