+
Skip to content

Fixing weight shape for grouped Conv2D #797

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Jun 23, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
52 changes: 43 additions & 9 deletions src/nn/conv.rs
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,7 @@ impl<
where
E: Dtype,
D: Device<E>,
Const<{ I / G }>: Sized,
Conv2D<I, O, K, S, P, L, G, E, D>: BuildModule<D, E>,
{
type Built = Conv2D<I, O, K, S, P, L, G, E, D>;
Expand Down Expand Up @@ -62,6 +63,7 @@ where
///
/// See [conv animations](https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md) for helpful
/// visualization of all of these parameters.

#[derive(Debug, Clone)]
pub struct Conv2D<
const IN_CHAN: usize,
Expand All @@ -73,8 +75,10 @@ pub struct Conv2D<
const GROUPS: usize,
E: Dtype,
D: Storage<E>,
> {
pub weight: Tensor<Rank4<OUT_CHAN, IN_CHAN, KERNEL_SIZE, KERNEL_SIZE>, E, D>,
> where
Const<{ IN_CHAN / GROUPS }>: Sized,
{
pub weight: Tensor<Rank4<OUT_CHAN, { IN_CHAN / GROUPS }, KERNEL_SIZE, KERNEL_SIZE>, E, D>,
}

impl<
Expand All @@ -89,6 +93,7 @@ impl<
D,
> TensorCollection<E, D> for Conv2D<I, O, K, S, P, L, G, E, D>
where
Const<{ I / G }>: Sized,
E: Dtype + Float + SampleUniform,
D: Device<E>,
{
Expand All @@ -112,9 +117,8 @@ where
}
}

#[cfg(feature = "nightly")]
impl<
const C: usize,
const I: usize,
const O: usize,
const K: usize,
const S: usize,
Expand All @@ -124,19 +128,21 @@ impl<
E,
D,
Img,
> Module<Img> for Conv2D<C, O, K, S, P, L, G, E, D>
> Module<Img> for Conv2D<I, O, K, S, P, L, G, E, D>
where
Const<{ I / G }>: Sized,
E: Dtype,
D: Device<E>,
(Img, Tensor<Rank4<O, C, K, K>, E, D>): TryConv2D<Const<S>, Const<P>, Const<L>, Const<G>>,
(Img, Tensor<Rank4<O, { I / G }, K, K>, E, D>):
TryConv2D<Const<S>, Const<P>, Const<L>, Const<G>>,
{
type Output = <(Img, Tensor<Rank4<O, C, K, K>, E, D>) as TryConv2D<
type Output = <(Img, Tensor<Rank4<O, { I / G }, K, K>, E, D>) as TryConv2D<
Const<S>,
Const<P>,
Const<L>,
Const<G>,
>>::Convolved;
type Error = <(Img, Tensor<Rank4<O, C, K, K>, E, D>) as TryConv2D<
type Error = <(Img, Tensor<Rank4<O, { I / G }, K, K>, E, D>) as TryConv2D<
Const<S>,
Const<P>,
Const<L>,
Expand All @@ -159,10 +165,11 @@ impl<
E: Dtype,
D: Storage<E>,
> NonMutableModule for Conv2D<I, O, K, S, P, L, G, E, D>
where
Const<{ I / G }>: Sized,
{
}

#[cfg(feature = "nightly")]
#[cfg(test)]
mod tests {
use crate::{
Expand All @@ -189,6 +196,33 @@ mod tests {
let _: Tensor<Rank3<2, 6, 6>, _, _, _> = dev.build_module::<Conv2D<3, 2, 3, 2, 2>, TestDtype>().forward(x.clone());
}

#[test]
fn test_grouped_forward_sizes() {
let dev: TestDevice = Default::default();

let x = dev.zeros::<Rank3<16, 10, 10>>();

let m = dev.build_module::<Conv2D<16, 32, 3, 1, 0, 1, 1>, TestDtype>();
let _: Tensor<Rank4<32, 16, 3, 3>, _, _> = m.weight;
let _: Tensor<Rank3<32, 8, 8>, _, _> = m.forward(x.clone());

let m = dev.build_module::<Conv2D<16, 32, 3, 1, 0, 1, 2>, TestDtype>();
let _: Tensor<Rank4<32, 8, 3, 3>, _, _> = m.weight;
let _: Tensor<Rank3<32, 8, 8>, _, _> = m.forward(x.clone());

let m = dev.build_module::<Conv2D<16, 32, 3, 1, 0, 1, 4>, TestDtype>();
let _: Tensor<Rank4<32, 4, 3, 3>, _, _> = m.weight;
let _: Tensor<Rank3<32, 8, 8>, _, _> = m.forward(x.clone());

let m = dev.build_module::<Conv2D<16, 32, 3, 1, 0, 1, 8>, TestDtype>();
let _: Tensor<Rank4<32, 2, 3, 3>, _, _> = m.weight;
let _: Tensor<Rank3<32, 8, 8>, _, _> = m.forward(x.clone());

let m = dev.build_module::<Conv2D<16, 32, 3, 1, 0, 1, 16>, TestDtype>();
let _: Tensor<Rank4<32, 1, 3, 3>, _, _> = m.weight;
let _: Tensor<Rank3<32, 8, 8>, _, _> = m.forward(x);
}

#[rustfmt::skip]
#[test]
fn test_forward_4d_sizes() {
Expand Down
1 change: 1 addition & 0 deletions src/nn/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -188,6 +188,7 @@ mod add_into;
mod batchnorm1d;
mod batchnorm2d;
mod bias2d;
#[cfg(feature = "nightly")]
mod conv;
mod convtrans;
mod dropout;
Expand Down
44 changes: 34 additions & 10 deletions src/shapes/shape.rs
Original file line number Diff line number Diff line change
Expand Up @@ -141,52 +141,76 @@ impl<const M: usize> ConstDim for Const<M> {

impl<const N: usize> core::ops::Add<Const<N>> for usize {
type Output = usize;
fn add(self, rhs: Const<N>) -> Self::Output {
self.size() + rhs.size()
fn add(self, _: Const<N>) -> Self::Output {
self.size() + N
}
}
impl<const N: usize> core::ops::Add<usize> for Const<N> {
type Output = usize;
fn add(self, rhs: usize) -> Self::Output {
self.size() + rhs.size()
N + rhs.size()
}
}

#[cfg(feature = "nightly")]
impl<const N: usize, const M: usize> core::ops::Add<Const<N>> for Const<M>
where
Const<{ N + M }>: Sized,
Const<{ M + N }>: Sized,
{
type Output = Const<{ N + M }>;
type Output = Const<{ M + N }>;
fn add(self, _: Const<N>) -> Self::Output {
Const
}
}

impl<const N: usize> core::ops::Mul<Const<N>> for usize {
type Output = usize;
fn mul(self, rhs: Const<N>) -> Self::Output {
self.size() * rhs.size()
fn mul(self, _: Const<N>) -> Self::Output {
self.size() * N
}
}
impl<const N: usize> core::ops::Mul<usize> for Const<N> {
type Output = usize;
fn mul(self, rhs: usize) -> Self::Output {
self.size() * rhs.size()
N * rhs.size()
}
}

#[cfg(feature = "nightly")]
impl<const N: usize, const M: usize> core::ops::Mul<Const<N>> for Const<M>
where
Const<{ N * M }>: Sized,
Const<{ M * N }>: Sized,
{
type Output = Const<{ N * M }>;
type Output = Const<{ M * N }>;
fn mul(self, _: Const<N>) -> Self::Output {
Const
}
}

impl<const N: usize> core::ops::Div<Const<N>> for usize {
type Output = usize;
fn div(self, _: Const<N>) -> Self::Output {
self.size() / N
}
}
impl<const N: usize> core::ops::Div<usize> for Const<N> {
type Output = usize;
fn div(self, rhs: usize) -> Self::Output {
N / rhs.size()
}
}

#[cfg(feature = "nightly")]
impl<const N: usize, const M: usize> core::ops::Div<Const<N>> for Const<M>
where
Const<{ M / N }>: Sized,
{
type Output = Const<{ M / N }>;
fn div(self, _: Const<N>) -> Self::Output {
Const
}
}

/// Represents either `[T; N]` or `Vec<T>`
pub trait Array<T>: IntoIterator<Item = T> {
type Dim: Dim;
Expand Down
34 changes: 26 additions & 8 deletions src/tensor_ops/conv2d/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -166,8 +166,17 @@ impl<Kernel: Dim, Stride: Dim, Padding: Dim, Dilation: Dim, Groups: Dim>
impl<InpChan, OutChan, Kernel, Stride, Padding, Dilation, Groups, H, W, E, D, T>
TryConv2D<Stride, Padding, Dilation, Groups>
for (
Tensor<(<InpChan as std::ops::Mul<Groups>>::Output, H, W), E, D, T>,
Tensor<(OutChan, InpChan, Kernel, Kernel), E, D>,
Tensor<(InpChan, H, W), E, D, T>,
Tensor<
(
OutChan,
<InpChan as std::ops::Div<Groups>>::Output,
Kernel,
Kernel,
),
E,
D,
>,
)
where
InpChan: Dim,
Expand All @@ -182,8 +191,8 @@ where
E: Dtype,
D: Conv2DKernel<E> + crate::tensor_ops::reshape_to::ReshapeKernel<E>,
T: Tape<E, D>,
InpChan: std::ops::Mul<Groups>,
<InpChan as std::ops::Mul<Groups>>::Output: Dim,
InpChan: std::ops::Div<Groups>,
<InpChan as std::ops::Div<Groups>>::Output: Dim,
(H, Kernel): TryConv2D<Stride, Padding, Dilation, Groups>,
(W, Kernel): TryConv2D<Stride, Padding, Dilation, Groups>,
<(H, Kernel) as TryConv2D<Stride, Padding, Dilation, Groups>>::Convolved: Dim,
Expand Down Expand Up @@ -220,8 +229,17 @@ where
impl<InpChan, OutChan, Kernel, Stride, Padding, Dilation, Groups, Batch, H, W, E, D, T>
TryConv2D<Stride, Padding, Dilation, Groups>
for (
Tensor<(Batch, <InpChan as std::ops::Mul<Groups>>::Output, H, W), E, D, T>,
Tensor<(OutChan, InpChan, Kernel, Kernel), E, D>,
Tensor<(Batch, InpChan, H, W), E, D, T>,
Tensor<
(
OutChan,
<InpChan as std::ops::Div<Groups>>::Output,
Kernel,
Kernel,
),
E,
D,
>,
)
where
InpChan: Dim,
Expand All @@ -237,8 +255,8 @@ where
E: Dtype,
D: Conv2DKernel<E>,
T: Tape<E, D>,
InpChan: std::ops::Mul<Groups>,
<InpChan as std::ops::Mul<Groups>>::Output: Dim,
InpChan: std::ops::Div<Groups>,
<InpChan as std::ops::Div<Groups>>::Output: Dim,
(H, Kernel): TryConv2D<Stride, Padding, Dilation, Groups>,
(W, Kernel): TryConv2D<Stride, Padding, Dilation, Groups>,
<(H, Kernel) as TryConv2D<Stride, Padding, Dilation, Groups>>::Convolved: Dim,
Expand Down
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载