+
Skip to content

using TensorFromVec for OneHotEncode and Arange #477

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Feb 23, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 4 additions & 6 deletions src/data/arange.rs
Original file line number Diff line number Diff line change
@@ -1,12 +1,12 @@
use crate::{
shapes::*,
tensor::{CopySlice, DeviceStorage, Tensor, ZerosTensor},
tensor::{DeviceStorage, Tensor, TensorFromVec, ZerosTensor},
};

use std::vec::Vec;

/// Generates a tensor with ordered data from 0 to `N`.
pub trait Arange<E: Dtype>: DeviceStorage + ZerosTensor<E> + CopySlice<E> {
pub trait Arange<E: Dtype>: DeviceStorage + ZerosTensor<E> + TensorFromVec<E> {
/// Generates a tensor with ordered data from 0 to `N`.
///
/// Const sized tensor:
Expand All @@ -29,9 +29,7 @@ pub trait Arange<E: Dtype>: DeviceStorage + ZerosTensor<E> + CopySlice<E> {
for i in 0..n.size() {
data.push(E::from_usize(i).unwrap());
}
let mut t = self.zeros_like(&(n,));
t.copy_from(&data);
t
self.tensor_from_vec(data, (n,))
}
}
impl<E: Dtype, D: ZerosTensor<E> + CopySlice<E>> Arange<E> for D {}
impl<E: Dtype, D: ZerosTensor<E> + TensorFromVec<E>> Arange<E> for D {}
10 changes: 4 additions & 6 deletions src/data/one_hot_encode.rs
Original file line number Diff line number Diff line change
Expand Up @@ -2,12 +2,12 @@ use std::vec::Vec;

use crate::{
shapes::*,
tensor::{CopySlice, DeviceStorage, Tensor, ZerosTensor},
tensor::{DeviceStorage, Tensor, TensorFromVec, ZerosTensor},
};

/// One hot encodes an array of class labels into a 2d tensor of probability
/// vectors. This can be used in tandem with [crate::losses::cross_entropy_with_logits_loss()].
pub trait OneHotEncode<E: Dtype>: DeviceStorage + ZerosTensor<E> + CopySlice<E> {
pub trait OneHotEncode<E: Dtype>: DeviceStorage + ZerosTensor<E> + TensorFromVec<E> {
/// One hot encodes an array or vec into a tensor.
///
/// Arguments:
Expand Down Expand Up @@ -89,9 +89,7 @@ pub trait OneHotEncode<E: Dtype>: DeviceStorage + ZerosTensor<E> + CopySlice<E>
});
}
}
let mut t = self.zeros_like(&(l, n));
t.copy_from(&data);
t
self.tensor_from_vec(data, (l, n))
}
}
impl<E: Dtype, D: DeviceStorage + ZerosTensor<E> + CopySlice<E>> OneHotEncode<E> for D {}
impl<E: Dtype, D: DeviceStorage + ZerosTensor<E> + TensorFromVec<E>> OneHotEncode<E> for D {}
2 changes: 1 addition & 1 deletion src/tensor/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -125,7 +125,7 @@ pub use cpu::{Cpu, CpuError};
#[cfg(feature = "cuda")]
pub use cuda::{Cuda, CudaError};

pub use storage_traits::{AsArray, AsVec, CopySlice, TensorFrom};
pub use storage_traits::{AsArray, AsVec, CopySlice, TensorFrom, TensorFromVec};
pub use storage_traits::{DeviceStorage, HasErr};
pub use storage_traits::{OnesTensor, SampleTensor, ZerosTensor};

Expand Down
2 changes: 1 addition & 1 deletion src/tensor_ops/utilities/device.rs
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ use crate::{
pub trait Device<E: Dtype>:
DeviceStorage
+ CopySlice<E>
+ crate::tensor::storage_traits::TensorFromVec<E>
+ crate::tensor::TensorFromVec<E>

// allocation
+ crate::tensor::ZerosTensor<E>
Expand Down
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载