This is the official repo for the EMNLP 2021 paper "Multimodal Phased Transformer for Sentiment Analysis"
Preprocessed MOSI and MOSEI dataset by MulT download in https://github.com/yaohungt/Multimodal-Transformer UR-FUNNY dataset download in https://github.com/ROC-HCI/UR-FUNNY
Use run.py to run the model, use Optuna to search hyper-params.
If you use this code in your research, please cite the following paper:
@inproceedings{cheng-etal-2021-multimodal,
title = "Multimodal Phased Transformer for Sentiment Analysis",
author = "Cheng, Junyan and
Fostiropoulos, Iordanis and
Boehm, Barry and
Soleymani, Mohammad",
editor = "Moens, Marie-Francine and
Huang, Xuanjing and
Specia, Lucia and
Yih, Scott Wen-tau",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.189/",
doi = "10.18653/v1/2021.emnlp-main.189",
pages = "2447--2458",
abstract = "Multimodal Transformers achieve superior performance in multimodal learning tasks. However, the quadratic complexity of the self-attention mechanism in Transformers limits their deployment in low-resource devices and makes their inference and training computationally expensive. We propose multimodal Sparse Phased Transformer (SPT) to alleviate the problem of self-attention complexity and memory footprint. SPT uses a sampling function to generate a sparse attention matrix and compress a long sequence to a shorter sequence of hidden states. SPT concurrently captures interactions between the hidden states of different modalities at every layer. To further improve the efficiency of our method, we use Layer-wise parameter sharing and Factorized Co-Attention that share parameters between Cross Attention Blocks, with minimal impact on task performance. We evaluate our model with three sentiment analysis datasets and achieve comparable or superior performance compared with the existing methods, with a 90{\%} reduction in the number of parameters. We conclude that (SPT) along with parameter sharing can capture multimodal interactions with reduced model size and improved sample efficiency."
}