+
Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,7 @@ images = model.generate_text2img(

[![Framework: PyTorch](https://img.shields.io/badge/Framework-PyTorch-orange.svg)](https://pytorch.org/) [![Huggingface space](https://img.shields.io/badge/🤗-Huggingface-yello.svg)](https://huggingface.co/sberbank-ai/Kandinsky_2.1)
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1xSbu-b-EwYd6GdaFPRVgvXBX_mciZ41e?usp=sharing)
[![Replicate](https://replicate.com/cjwbw/kandinsky-2/badge)](https://replicate.com/cjwbw/kandinsky-2)


[Habr post](https://habr.com/ru/company/sberbank/blog/725282/)
Expand Down
28 changes: 28 additions & 0 deletions cog.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
# Configuration for Cog ⚙️
# Reference: https://github.com/replicate/cog/blob/main/docs/yaml.md

build:
gpu: true
cuda: "11.6"
python_version: "3.10"
system_packages:
- "libgl1-mesa-glx"
- "libglib2.0-0"
python_packages:
- "torch==1.13.1"
- "sentencepiece==0.1.97"
- "accelerate==0.16.0"
- "Pillow==9.5.0"
- "attrs==22.2.0"
- "opencv-python==4.7.0.72"
- git+https://github.com/openai/CLIP.git
- "tqdm==4.65.0"
- "ftfy==6.1.1"
- "blobfile==2.0.1"
- "transformers==4.23.1"
- "torchvision==0.14.1"
- "omegaconf==2.3.0"
- "pytorch_lightning==2.0.1"
- "einops==0.6.0"

predict: "predict.py:Predictor"
65 changes: 65 additions & 0 deletions predict.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
from typing import List
from cog import BasePredictor, Input, Path
from kandinsky2 import get_kandinsky2


class Predictor(BasePredictor):
def setup(self):
self.model = get_kandinsky2(
"cuda",
task_type="text2img",
cache_dir="./kandinsky2-weights",
model_version="2.1",
use_flash_attention=False,
)

def predict(
self,
prompt: str = Input(description="Input Prompt", default="red cat, 4k photo"),
num_inference_steps: int = Input(
description="Number of denoising steps", ge=1, le=500, default=50
),
guidance_scale: float = Input(
description="Scale for classifier-free guidance", ge=1, le=20, default=4
),
scheduler: str = Input(
description="Choose a scheduler",
default="p_sampler",
choices=["ddim_sampler", "p_sampler", "plms_sampler"],
),
prior_cf_scale: int = Input(default=4),
prior_steps: str = Input(default="5"),
width: int = Input(
description="Choose width. Lower the setting if out of memory.",
default=512,
choices=[256, 288, 432, 512, 576, 768, 1024],
),
height: int = Input(
description="Choose height. Lower the setting if out of memory.",
default=512,
choices=[256, 288, 432, 512, 576, 768, 1024],
),
batch_size: int = Input(
description="Choose batch size. Lower the setting if out of memory.",
default=1,
choices=[1, 2, 3, 4],
),
) -> List[Path]:
images = self.model.generate_text2img(
prompt,
num_steps=num_inference_steps,
batch_size=batch_size,
guidance_scale=guidance_scale,
h=height,
w=width,
sampler=scheduler,
prior_cf_scale=prior_cf_scale,
prior_steps=prior_steps,
)
output = []
for i, im in enumerate(images):
out = f"/tmp/out_{i}.png"
im.save(out)
im.save(f"out_{i}.png")
output.append(Path(out))
return output
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载