conda env create -f environment.yml
# computation environments
kaldi
python>=3.8
cuda=11.0.3
pytorch=1.7.1
Please refer to the installation details in https://github.com/matln/asv-subtools#ready-to-start.
git clone -b CDMA https://github.com/matln/asv-subtools
Change to your own Kaldi & ASV-subtools path in path.sh
.
export KALDI_ROOT=<your path>
export SUBTOOLS=<your path>
It is recommended to change the stage
and endstage
to run step by step.
bash preprocess.sh
- Pretraining
bash run_resnet34_pretrain.sh
- Supervised domain adaptation
bash run_resnet34_SDA.sh
- Unsupervised domain adaptation
bash run_resnet34_UDA.sh
- Optimize the MMD loss in the embedding space
bash run_resnet34_emb_mmd.sh
- Finetuning
bash run_resnet34_FT.sh