+
Skip to content

Diouo/TSTMotion

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

[ICME2025 Oral] TSTMotion: Training-free Scene-aware Text-to-motion Generation

youtube video project page

Folder Structure

├── datasets
│   ├── demo_scene
│   │   ├── ScanNet0604
│   │   │   ├── detection_results.pkl
│   │   │   ├── scene0604_00_vh_clean.ply
│   ├── HumanML3D
│   │   ├── new_joint_vecs
│   │   ├── new_joints
│   ├── prompt
│   ├── smplx
│   │   ├── SMPLX_NEUTRAL.npz
│   │   ├── SMPLX_NEUTRAL.pkl
├── OmniControl
│   ├── glove
│   ├── t2m
│   ├── save
│   │   ├── omnicontrol_ckpt
│   │   │   ├── model_humanml3d.pt
├── scripts
├── utils

Environment Setup

1. Setup Conda:

conda env create -f environment.yml
conda activate tstmotion
python -m spacy download en_core_web_sm
pip install git+https://github.com/openai/CLIP.git

2. Download Dependencies:

The results should be placed in OmniControl folder as shown in Folder Structure, including glove,t2m and smplx.

cd OmniControl
bash prepare/download_smpl_files.sh
bash prepare/download_glove.sh
bash prepare/download_t2m_evaluators.sh

3. Download HumanML3D Dataset:

Follow the instructions in HumanML3D, then copy the results as shown in Folder Structure.

4. Download Checkpoint:

The results should be placed as shown in Folder Structure, including model_humanml3d.pt.

cd /OmniControl/save
gdown --id 1oTkBtArc3xjqkYD6Id7LksrTOn3e1Zud
unzip omnicontrol_ckpt.zip -d .

5. Download SMPLX:

You can download the SMPLX for visualization, including SMPLX_NEUTRAL.npz and SMPLX_NEUTRAL.pkl.

6. Download Prepared Segmentation Results:

You can download the prepared segmentation results in folder demo_scene from Google Drive.

Notably, the pointcloud of scene0604_00_vh_clean.ply must download from ScanNet.

Motion Generation

You can change the scene and the caption of the motion in demo.sh.

Notably, before the motion generation, you must input your openai's api key.

cd /scripts
bash demo.sh
bash visualize.sh

Acknowledgements

Some codes are borrowed from MDM, HUMANISE, OmniControl.

Citation

If you find TSTMotion useful for your work please cite:

@misc{guo2025tstmotiontrainingfreesceneawaretexttomotion,
      title={TSTMotion: Training-free Scene-aware Text-to-motion Generation}, 
      author={Ziyan Guo and Haoxuan Qu and Hossein Rahmani and Dewen Soh and Ping Hu and Qiuhong Ke and Jun Liu},
      year={2025},
      eprint={2505.01182},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2505.01182}, 
}

About

[ICME2025 Oral] The official implementation of TSTMotion in pytorch

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载