Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 Apr 2025]
Title:Enhancing Out-of-Distribution Detection with Extended Logit Normalization
View PDF HTML (experimental)Abstract:Out-of-distribution (OOD) detection is essential for the safe deployment of machine learning models. Recent advances have explored improved classification losses and representation learning strategies to enhance OOD detection. However, these methods are often tailored to specific post-hoc detection techniques, limiting their generalizability. In this work, we identify a critical issue in Logit Normalization (LogitNorm), which inhibits its effectiveness in improving certain post-hoc OOD detection methods. To address this, we propose Extended Logit Normalization ($\textbf{ELogitNorm}$), a novel hyperparameter-free formulation that significantly benefits a wide range of post-hoc detection methods. By incorporating feature distance-awareness to LogitNorm, $\textbf{ELogitNorm}$ shows more robust OOD separability and in-distribution (ID) confidence calibration than its predecessor. Extensive experiments across standard benchmarks demonstrate that our approach outperforms state-of-the-art training-time methods in OOD detection while maintaining strong ID classification accuracy.
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.