Computer Science > Computation and Language
[Submitted on 19 Feb 2025]
Title:Shall Your Data Strategy Work? Perform a Swift Study
View PDF HTML (experimental)Abstract:This work presents a swift method to assess the efficacy of particular types of instruction-tuning data, utilizing just a handful of probe examples and eliminating the need for model retraining. This method employs the idea of gradient-based data influence estimation, analyzing the gradient projections of probe examples from the chosen strategy onto evaluation examples to assess its advantages. Building upon this method, we conducted three swift studies to investigate the potential of Chain-of-thought (CoT) data, query clarification data, and response evaluation data in enhancing model generalization. Subsequently, we embarked on a validation study to corroborate the findings of these swift studies. In this validation study, we developed training datasets tailored to each studied strategy and compared model performance with and without the use of these datasets. The results of the validation study aligned with the findings of the swift studies, validating the efficacy of our proposed method.
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.