Computer Science > Machine Learning
[Submitted on 10 Jan 2025 (v1), last revised 24 Apr 2025 (this version, v2)]
Title:Emergent Symbol-like Number Variables in Artificial Neural Networks
View PDF HTML (experimental)Abstract:What types of numeric representations emerge in neural systems? What would a satisfying answer to this question look like? In this work, we interpret Neural Network (NN) solutions to sequence based counting tasks through a variety of lenses. We seek to understand how well we can understand NNs through the lens of interpretable Symbolic Algorithms (SAs), where SAs are defined by precise, abstract, mutable variables used to perform computations. We use GRUs, LSTMs, and Transformers trained using Next Token Prediction (NTP) on numeric tasks where the solutions to the tasks depend on numeric information only latent in the task structure. We show through multiple causal and theoretical methods that we can interpret NN's raw activity through the lens of simplified SAs when we frame the neural activity in terms of interpretable subspaces rather than individual neurons. Depending on the analysis, however, these interpretations can be graded, existing on a continuum, highlighting the philosophical question of what it means to "interpret" neural activity, and motivating us to introduce Alignment Functions to add flexibility to the existing Distributed Alignment Search (DAS) method. Through our specific analyses we show the importance of causal interventions for NN interpretability; we show that recurrent models develop graded, symbol-like number variables within their neural activity; we introduce a generalization of DAS to frame NN activity in terms of linear functions of interpretable variables; and we show that Transformers must use anti-Markovian solutions -- solutions that avoid using cumulative, Markovian hidden states -- in the absence of sufficient attention layers. We use our results to encourage interpreting NNs at the level of neural subspaces through the lens of SAs.
Submission history
From: Satchel Grant [view email][v1] Fri, 10 Jan 2025 18:03:46 UTC (2,049 KB)
[v2] Thu, 24 Apr 2025 02:48:10 UTC (2,616 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.