Computer Science > Databases
[Submitted on 9 Dec 2024 (v1), last revised 11 Dec 2024 (this version, v2)]
Title:StructRide: A Framework to Exploit the Structure Information of Shareability Graph in Ridesharing
View PDF HTML (experimental)Abstract:Ridesharing services play an essential role in modern transportation, which significantly reduces traffic congestion and exhaust pollution. In the ridesharing problem, improving the sharing rate between riders can not only save the travel cost of drivers but also utilize vehicle resources more efficiently. The existing online-based and batch-based methods for the ridesharing problem lack the analysis of the sharing relationship among riders, leading to a compromise between efficiency and accuracy. In addition, the graph is a powerful tool to analyze the structure information between nodes. Therefore, in this paper, we propose a framework, namely StructRide, to utilize the structure information to improve the results for ridesharing problems. Specifically, we extract the sharing relationships between riders to construct a shareability graph. Then, we define a novel measurement shareability loss for vehicles to select groups of requests such that the unselected requests still have high probabilities of sharing. Our SARD algorithm can efficiently solve dynamic ridesharing problems to achieve dramatically improved results. Through extensive experiments, we demonstrate the efficiency and effectiveness of our SARD algorithm on two real datasets. Our SARD can run up to 72.68 times faster and serve up to 50% more requests than the state-of-the-art algorithms.
Submission history
From: Peng Cheng [view email][v1] Mon, 9 Dec 2024 09:35:45 UTC (2,197 KB)
[v2] Wed, 11 Dec 2024 05:55:02 UTC (2,196 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.