Abstract
Acoustic tweezers are devices that use acoustic waves for contactless particle trapping and manipulation. They provide advantages typical of ultrasound-based techniques, such as minimal thermal effects and high biocompatibility, making them ideal for handling fragile biological samples. By using different transducer configurations and adjusting acoustic parameters, acoustic tweezers can operate on particles across various scales — from nanometres to millimetres — meeting several engineering, biological and medical needs. However, the use of acoustic tweezers in biomedical contexts still requires further optimization to broaden their applications and achieve an impact comparable to that of optical tweezers. This Primer discusses the fundamental principles of acoustic tweezers and outlines their typical experimental set-ups. We showcase advances in applications such as force spectroscopy, single-cell analysis, tissue engineering, organismal studies and in vivo procedures. Additionally, we address reproducibility challenges, suggest data-sharing standards and examine current technological limitations. Our goal is to empower researchers with the foundational knowledge needed to effectively apply acoustic tweezers, fostering their broader adoption in precision biology and medicine.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 1 digital issues and online access to articles
$119.00 per year
only $119.00 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Friend, J. & Yeo, L. Y. Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev. Mod. Phys. 83, 647–704 (2011).
Bruus, H. et al. Forthcoming Lab on a Chip tutorial series on acoustofluidics: acoustofluidics—exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation. Lab Chip 11, 3579–3580 (2011).
Rufo, J., Cai, F., Friend, J., Wiklund, M. & Huang, T. J. Acoustofluidics for biomedical applications. Nat. Rev. Methods Primers 2, 30 (2022). This paper provides an introduction on acoustofluidics for biomedical applications, with a detailed discussion of acoustic radiation forces, acoustic streaming and their roles in point-of-care diagnostics, serving as a complementary resource to this Primer.
Ahmed, D. et al. Neutrophil-inspired propulsion in a combined acoustic and magnetic field. Nat. Commun. 8, 770 (2017).
Fan, X.-D., Zou, Z. & Zhang, L. Acoustic vortices in inhomogeneous media. Phys. Rev. Res. 1, 032014 (2019).
Glynne-Jones, P., Boltryk, R. J., Harris, N. R., Cranny, A. W. & Hill, M. Mode-switching: a new technique for electronically varying the agglomeration position in an acoustic particle manipulator. Ultrasonics 50, 68–75 (2010).
Gu, Y. et al. Acoustofluidic centrifuge for nanoparticle enrichment and separation. Sci. Adv. 7, eabc0467 (2021).
Franke, T., Braunmüller, S., Schmid, L., Wixforth, A. & Weitz, D. Surface acoustic wave actuated cell sorting (SAWACS). Lab Chip 10, 789–794 (2010).
Hao, N. et al. Acoustofluidic multimodal diagnostic system for Alzheimer’s disease. Biosens. Bioelectron. 196, 113730 (2022).
Wiklund, M. & Hertz, H. M. Ultrasonic enhancement of bead-based bioaffinity assays. Lab Chip 6, 1279–1292 (2006).
Wang, Z. et al. Acoustofluidic salivary exosome isolation: a liquid biopsy compatible approach for human papillomavirus–associated oropharyngeal cancer detection. J. Mol. Diagn. 22, 50–59 (2020).
Garg, N. et al. Whole-blood sorting, enrichment and in situ immunolabeling of cellular subsets using acoustic microstreaming. Microsyst. Nanoeng. 4, 17085 (2018).
Ren, L. et al. Standing surface acoustic wave (SSAW)‐based fluorescence‐activated cell sorter. Small 14, 1801996 (2018).
Shpak, O. et al. Acoustic droplet vaporization is initiated by superharmonic focusing. Proc. Natl Acad. Sci. USA 111, 1697–1702 (2014).
Zhang, J. et al. Surface acoustic waves enable rotational manipulation of Caenorhabditis elegans. Lab Chip 19, 984–992 (2019).
Neužil, P., Giselbrecht, S., Länge, K., Huang, T. J. & Manz, A. Revisiting lab-on-a-chip technology for drug discovery. Nat. Rev. Drug Discov. 11, 620–632 (2012).
Li, J. et al. Three dimensional acoustic tweezers with vortex streaming. Commun. Phys. 4, 113 (2021).
Sitters, G. et al. Acoustic force spectroscopy. Nat. Methods 12, 47–50 (2015).
Collins, D. J. et al. Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat. Commun. 6, 8686 (2015).
Chen, C. et al. Acoustofluidic rotational tweezing enables high-speed contactless morphological phenotyping of zebrafish larvae. Nat. Commun. 12, 1118 (2021). This study explores the use of acoustic streaming to achieve contactless and rapid rotation of zebrafish larvae, enabling multispectral imaging of the body and internal organs for quantitative evaluation of key morphological characteristics.
Cartagena-Rivera, A. X., Van Itallie, C. M., Anderson, J. M. & Chadwick, R. S. Apical surface supracellular mechanical properties in polarized epithelium using noninvasive acoustic force spectroscopy. Nat. Commun. 8, 1030 (2017).
Kamsma, D. et al. Single-cell acoustic force spectroscopy: resolving kinetics and strength of T cell adhesion to fibronectin. Cell Rep. 24, 3008–3016 (2018).
Guo, F. et al. Controlling cell–cell interactions using surface acoustic waves. Proc. Natl Acad. Sci. USA 112, 43–48 (2015).
Guo, F. et al. Three-dimensional manipulation of single cells using surface acoustic waves. Proc. Natl Acad. Sci. USA 113, 1522–1527 (2016).
Yang, S. et al. Harmonic acoustics for dynamic and selective particle manipulation. Nat. Mater. 21, 540–546 (2022). This study presents the development of harmonic acoustic tweezers capable of reversible pairing and separation of single cells.
Yang, S. et al. Acoustic tweezers for high-throughput single-cell analysis. Nat. Protoc. 18, 2441–2458 (2023).
Chen, K. et al. Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers. Lab Chip 16, 2636–2643 (2016).
Tian, Z. et al. Generating multifunctional acoustic tweezers in Petri dishes for contactless, precise manipulation of bioparticles. Sci. Adv. 6, eabb0494 (2020).
Ao, Z. et al. Rapid profiling of tumor‐immune interaction using acoustically assembled patient-derived cell clusters. Adv. Sci. 9, 2201478 (2022).
He, Y. et al. Acoustofluidic interfaces for the mechanobiological secretome of MSCs. Nat. Commun. 14, 7639 (2023).
Kuang, X. et al. Self-enhancing sono-inks enable deep-penetration acoustic volumetric printing. Science 382, 1148–1155 (2023).
O’Reilly, M. A. Exploiting the mechanical effects of ultrasound for noninvasive therapy. Science 385, eadp7206 (2024).
Mitragotri, S. Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat. Rev. Drug Discov. 4, 255–260 (2005). This article reviews the application of ultrasound in drug delivery and provides a partial summary of the ultrasound frequencies used in medical applications.
Shi, J. et al. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip 9, 2890–2895 (2009).
Nilsson, J., Evander, M., Hammarström, B. & Laurell, T. Review of cell and particle trapping in microfluidic systems. Anal. Chim. Acta 649, 141–157 (2009).
Ding, X. et al. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proc. Natl Acad. Sci. USA 109, 11105–11109 (2012).
Yeo, L. Y. & Friend, J. R. Surface acoustic wave microfluidics. Annu. Rev. Fluid Mech. 46, 379–406 (2014).
Ozcelik, A. et al. Acoustic tweezers for the life sciences. Nat. Methods 15, 1021–1028 (2018).
Ullmann, D. Life and work of EFF Chladni. Eur. Phys. J. Spec. Top. 145, 25–32 (2007).
Faraday, M. On the forms and states assumed by fluids in contact with vibrating elastic surfaces. Phil. Trans. R. Soc. Lond. 121, 319–340 (1831).
Rayleigh, Lord The Theory of Sound 2nd edn, Vol. 2 (Dover, 1896).
Sarvazyan, A. P., Rudenko, O. V. & Nyborg, W. L. Biomedical applications of radiation force of ultrasound: historical roots and physical basis. Ultrasound Med. Biol. 36, 1379–1394 (2010).
Wu, J. Acoustical tweezers. J. Acoust. Soc. Am. 89, 2140–2143 (1991).
Hertz, H. M. Standing‐wave acoustic trap for nonintrusive positioning of microparticles. J. Appl. Phys. 78, 4845–4849 (1995).
Marzo, A. et al. Holographic acoustic elements for manipulation of levitated objects. Nat. Commun. 6, 8661 (2015).
Marzo, A. & Drinkwater, B. W. Holographic acoustic tweezers. Proc. Natl Acad. Sci. USA 116, 84–89 (2019). This study describes the use of holographic acoustic tweezers for the reconfigurable manipulation of individual particles in air.
Marzo, A., Caleap, M. & Drinkwater, B. W. Acoustic virtual vortices with tunable orbital angular momentum for trapping of Mie particles. Phys. Rev. Lett. 120, 044301 (2018).
Melde, K., Mark, A. G., Qiu, T. & Fischer, P. Holograms for acoustics. Nature 537, 518–522 (2016). This paper reports the development of acoustic holograms capable of generating complex 3D pressure and phase distributions for object manipulation.
Baudoin, M. et al. Folding a focalized acoustical vortex on a flat holographic transducer: miniaturized selective acoustical tweezers. Sci. Adv. 5, eaav1967 (2019).
Baudoin, M. et al. Spatially selective manipulation of cells with single-beam acoustical tweezers. Nat. Commun. 11, 4244 (2020).
Jooss, V. M., Bolten, J. S., Huwyler, J. & Ahmed, D. In vivo acoustic manipulation of microparticles in zebrafish embryos. Sci. Adv. 8, eabm2785 (2022).
Wu, M. et al. Sound innovations for biofabrication and tissue engineering. Microsyst. Nanoeng. 10, 170 (2024).
Rufo, J., Zhang, P., Zhong, R., Lee, L. P. & Huang, T. J. A sound approach to advancing healthcare systems: the future of biomedical acoustics. Nat. Commun. 13, 3459 (2022).
Del Campo Fonseca, A. et al. Ultrasound trapping and navigation of microrobots in the mouse brain vasculature. Nat. Commun. 14, 5889 (2023).
Chu, Y. S. et al. Force measurements in E-cadherin–mediated cell doublets reveal rapid adhesion strengthened by actin cytoskeleton remodeling through Rac and Cdc42. J. Cell Biol. 167, 1183–1194 (2004).
Liu, B., Chen, W., Evavold, B. D. & Zhu, C. Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling. Cell 157, 357–368 (2014).
Aimon, S. et al. Membrane shape modulates transmembrane protein distribution. Dev. Cell 28, 212–218 (2014).
Hosseini, B. H. et al. Immune synapse formation determines interaction forces between T cells and antigen-presenting cells measured by atomic force microscopy. Proc. Natl Acad. Sci. USA 106, 17852–17857 (2009).
Friedrichs, J., Helenius, J. & Muller, D. J. Quantifying cellular adhesion to extracellular matrix components by single-cell force spectroscopy. Nat. Protoc. 5, 1353–1361 (2010).
Guillaume-Gentil, O. et al. Force-controlled manipulation of single cells: from AFM to FluidFM. Trends Biotechnol. 32, 381–388 (2014).
Skelley, A. M., Kirak, O., Suh, H., Jaenisch, R. & Voldman, J. Microfluidic control of cell pairing and fusion. Nat. Methods. 6, 147–152 (2009).
Zhang, K., Chou, C.-K., Xia, X., Hung, M.-C. & Qin, L. Block-cell-printing for live single-cell printing. Proc. Natl Acad. Sci. USA 111, 2948–2953 (2014).
Dholakia, K. & Reece, P. Optical micromanipulation takes hold. Nano today 1, 18–27 (2006).
Feng, Y. et al. Mechanosensing drives acuity of αβ T-cell recognition. Proc. Natl Acad. Sci. USA 114, E8204–E8213 (2017).
Ashkin, A., Dziedzic, J. M. & Yamane, T. Optical trapping and manipulation of single cells using infrared laser beams. Nature 330, 769–771 (1987).
Guck, J. et al. The optical stretcher: a novel laser tool to micromanipulate cells. Biophys. J. 81, 767–784 (2001).
Dholakia, K., Drinkwater, B. W. & Ritsch-Marte, M. Comparing acoustic and optical forces for biomedical research. Nat. Rev. Phys. 2, 480–491 (2020). This review paper provides an overview of optical and acoustic tweezers by comparing the respective forces, discussing the limitations and advantages of each technique, and serving as a valuable complement to this Primer.
Zhang, Z. & Ahmed, D. Light-driven high-precision cell adhesion kinetics. Light Sci. Appl. 11, 266 (2022).
Shi, Y. et al. Nanometer-precision linear sorting with synchronized optofluidic dual barriers. Sci. Adv. 4, eaao0773 (2018).
Shi, Y. et al. Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency measurement. Nat. Commun. 9, 815 (2018).
Neuman, K. C. & Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods. 5, 491–505 (2008).
De Vlaminck, I. & Dekker, C. Recent advances in magnetic tweezers. Annu. Rev. Biophys. 41, 453–472 (2012).
Tapia-Rojo, R., Mora, M. & Garcia-Manyes, S. Single-molecule magnetic tweezers to probe the equilibrium dynamics of individual proteins at physiologically relevant forces and timescales. Nat. Protoc. 19, 1779–1806 (2024).
Pohl, H. A. & Crane, J. S. Dielectrophoresis of cells. Biophys. J. 11, 711–727 (1971).
Kim, D., Sonker, M. & Ros, A. Dielectrophoresis: from molecular to micrometer-scale analytes. Anal. Chem. 91, 277–295 (2019).
Kim, U. et al. Selection of mammalian cells based on their cell-cycle phase using dielectrophoresis. Proc. Natl Acad. Sci. USA 104, 20708–20712 (2007).
Laurell, T., Petersson, F. & Nilsson, A. Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem. Soc. Rev. 36, 492–506 (2007).
Undvall Anand, E. et al. Two-step acoustophoresis separation of live tumor cells from whole blood. Anal. Chem. 93, 17076–17085 (2021).
Shi, J., Huang, H., Stratton, Z., Huang, Y. & Huang, T. J. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 9, 3354–3359 (2009).
Ding, X. et al. Cell separation using tilted-angle standing surface acoustic waves. Proc. Natl Acad. Sci. USA 111, 12992–12997 (2014).
Li, P. et al. Acoustic separation of circulating tumor cells. Proc. Natl Acad. Sci. USA 112, 4970–4975 (2015).
Wu, M. et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc. Natl Acad. Sci. USA 114, 10584–10589 (2017).
Xia, J. et al. Acoustofluidic virus isolation via Bessel beam excitation separation technology. ACS Nano 18, 22596–22607 (2024).
Tian, Z. et al. Wave number–spiral acoustic tweezers for dynamic and reconfigurable manipulation of particles and cells. Sci. Adv. 5, eaau6062 (2019).
Johnson, K. E. et al. A simple, validated approach for design of two-dimensional periodic particle patterns via acoustophoresis. Mater. Des. 232, 112165 (2023).
Joshi, S. V., Sadeghpour, S., Kuznetsova, N., Wang, C. & Kraft, M. Flexible micromachined ultrasound transducers (MUTs) for biomedical applications. Microsyst. Nanoeng. 11, 9 (2025).
Jo, Y. et al. General‐purpose ultrasound neuromodulation system for chronic, closed‐loop preclinical studies in freely behaving rodents. Adv. Sci. 9, 2202345 (2022).
Yang, Y. et al. Self-adaptive virtual microchannel for continuous enrichment and separation of nanoparticles. Sci. Adv. 8, eabn8440 (2022).
Yang, Y. et al. Manipulation of single cells via a stereo acoustic streaming tunnel (SteAST). Microsyst. Nanoeng. 8, 88 (2022).
Guo, X. et al. Controllable cell deformation using acoustic streaming for membrane permeability modulation. Adv. Sci. 8, 2002489 (2021).
Armstrong, J. P. et al. Engineering anisotropic muscle tissue using acoustic cell patterning. Adv. Mater. 30, 1802649 (2018).
Courtney, C. R. P. et al. Dexterous manipulation of microparticles using Bessel-function acoustic pressure fields. Appl. Phys. Lett. 102, 123508 (2013).
Raymond, S. J. et al. A deep learning approach for designed diffraction-based acoustic patterning in microchannels. Sci. Rep. 10, 8745 (2020).
Courtney, C. R. P. et al. Independent trapping and manipulation of microparticles using dexterous acoustic tweezers. Appl. Phys. Lett. 104, 154103 (2014).
Yang, Y. et al. In-vivo programmable acoustic manipulation of genetically engineered bacteria. Nat. Commun. 14, 3297 (2023). This study demonstrates the use of an acoustic phased array for in vivo manipulation of genetically engineered bacteria.
Cox, L., Croxford, A. & Drinkwater, B. W. Dynamic patterning of microparticles with acoustic impulse control. Sci. Rep. 12, 14549 (2022).
Riaud, A. et al. Anisotropic swirling surface acoustic waves from inverse filtering for on-chip generation of acoustic vortices. Phys. Rev. Appl. 4, 034004 (2015).
Cummer, S. A., Christensen, J. & Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1, 16001 (2016).
Ortega-Sandoval, M. E. et al. Ultrasonic manipulation of particles and cell aggregates with simultaneous acoustic visualization. Appl. Phys. Lett. 124, 204102 (2024).
Gu, Y. et al. Acoustofluidic holography for micro-to nanoscale particle manipulation. ACS Nano 14, 14635–14645 (2020).
Ma, Z. et al. Spatial ultrasound modulation by digitally controlling microbubble arrays. Nat. Commun. 11, 4537 (2020).
Yang, Y. et al. Self-navigated 3D acoustic tweezers in complex media based on time reversal. Research 2021, 9781394 (2021).
Baresch, D., Thomas, J.-L. & Marchiano, R. Observation of a single-beam gradient force acoustical trap for elastic particles: acoustical tweezers. Phys. Rev. Lett. 116, 024301 (2016).
Chen, S., Wang, Q., Wang, Q., Zhou, J. & Riaud, A. Numerical simulation of the radiation force from transient acoustic fields: application to laser-guided acoustic tweezers. Phys. Rev. Appl. 19, 054057 (2023).
Manneberg, O. et al. A three-dimensional ultrasonic cage for characterization of individual cells. Appl. Phys. Lett. 93, 063901 (2008).
Ohlin, M., Christakou, A. E., Frisk, T., Önfelt, B. & Wiklund, M. Influence of acoustic streaming on ultrasonic particle manipulation in a 100-well ring-transducer microplate. J. Micromech. Microeng. 23, 035008 (2013).
Ghanem, M. A. et al. Noninvasive acoustic manipulation of objects in a living body. Proc. Natl Acad. Sci. USA 117, 16848–16855 (2020). This report describes the use of acoustic tweezers to steer 3 mm-diameter glass spheres along preprogrammed paths within the urinary bladders of live pigs.
Mao, Z. et al. Enriching nanoparticles via acoustofluidics. ACS Nano 11, 603–612 (2017).
Baasch, T. & Dual, J. Acoustofluidic particle dynamics: beyond the Rayleigh limit. J. Acoust. Soc. Am. 143, 509–519 (2018).
Deng, Z., Kondalkar, V. V., Cierpka, C., Schmidt, H. & König, J. From rectangular to diamond shape: on the three-dimensional and size-dependent transformation of patterns formed by single particles trapped in microfluidic acoustic tweezers. Lab Chip 23, 2154–2160 (2023).
Zhang, J. et al. A solution to the biophysical fractionation of extracellular vesicles: acoustic nanoscale separation via wave-pillar excitation resonance (ANSWER). Sci. Adv. 8, eade0640 (2022).
Kvåle Løvmo, M. et al. Ultrasound-induced reorientation for multi-angle optical coherence tomography. Nat. Commun. 15, 2391 (2024).
Ahmed, D. et al. Rotational manipulation of single cells and organisms using acoustic waves. Nat. Commun. 7, 11085 (2016). This study illustrates the use of acoustic streaming to precisely rotate colloids, cells and entire organisms.
Pan, H., Mei, D., Xu, C., Han, S. & Wang, Y. Bisymmetric coherent acoustic tweezers based on modulation of surface acoustic waves for dynamic and reconfigurable cluster manipulation of particles and cells. Lab Chip 23, 215–228 (2023).
Ma, Z. et al. Acoustic holographic cell patterning in a biocompatible hydrogel. Adv. Mater. 32, 1904181 (2020).
Gao, Z. et al. A multifunctional acoustic tweezer for heterogenous assembloids patterning. Small Struct. 4, 2200288 (2023).
Pan, H., Mei, D., Xu, C., Li, X. & Wang, Y. Acoustic tweezers using bisymmetric coherent surface acoustic waves for dynamic and reconfigurable manipulation of particle multimers. J. Colloid Interface Sci. 643, 115–123 (2023).
Andrade, M. A. B., Bernassau, A. L. & Adamowski, J. C. Acoustic levitation of a large solid sphere. Appl. Phys. Lett. 109, 044101 (2016).
Marinko, J. T. et al. Folding and misfolding of human membrane proteins in health and disease: from single molecules to cellular proteostasis. Chem. Rev. 119, 5537–5606 (2019).
Chattopadhyay, P. K., Gierahn, T. M., Roederer, M. & Love, J. C. Single-cell technologies for monitoring immune systems. Nat. Immunol. 15, 128–135 (2014).
Zenobi, R. Single-cell metabolomics: analytical and biological perspectives. Science 342, 1243259 (2013).
Barrow, A. D. et al. Natural killer cells control tumor growth by sensing a growth factor. Cell 172, 534–548.e19 (2018).
Landsberg, J. et al. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature 490, 412–416 (2012).
Galbraith, C. G., Yamada, K. M. & Galbraith, J. A. Polymerizing actin fibers position integrins primed to probe for adhesion sites. Science 315, 992–995 (2007).
Cunha, L. D. et al. LC3-associated phagocytosis in myeloid cells promotes tumor immune tolerance. Cell 175, 429–441.e16 (2018).
Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373–384 (2010).
Khademhosseini, A. & Langer, R. A decade of progress in tissue engineering. Nat. Protoc. 11, 1775–1781 (2016).
Berthiaume, F., Maguire, T. J. & Yarmush, M. L. Tissue engineering and regenerative medicine: history, progress, and challenges. Annu. Rev. Chem. Biomol. Eng. 2, 403–430 (2011).
Peck, M., Dusserre, N., McAllister, T. N. & L’Heureux, N. Tissue engineering by self-assembly. Mater. Today 14, 218–224 (2011).
Hollister, S. J. Porous scaffold design for tissue engineering. Nat. Mater. 4, 518–524 (2005).
Sears, N. A., Seshadri, D. R., Dhavalikar, P. S. & Cosgriff-Hernandez, E. A review of three-dimensional printing in tissue engineering. Tissue Eng. Part B Rev. 22, 298–310 (2016).
Leung, C. M. et al. A guide to the organ-on-a-chip. Nat. Rev. Methods Primers 2, 33 (2022).
Kaletta, T. & Hengartner, M. O. Finding function in novel targets: C. elegans as a model organism. Nat. Rev. Drug Discov. 5, 387–399 (2006).
Lieschke, G. J. & Currie, P. D. Animal models of human disease: zebrafish swim into view. Nat. Rev. Genet. 8, 353–367 (2007).
Pan, P. et al. Robotic microinjection enables large-scale transgenic studies of Caenorhabditis elegans. Nat. Commun. 15, 8848 (2024).
Zhao, P. et al. Femtosecond laser microdissection for isolation of regenerating C. elegans neurons for single-cell RNA sequencing. Nat. Methods 20, 590–599 (2023).
Zhang, J. et al. Fluorescence-based sorting of Caenorhabditis elegans via acoustofluidics. Lab Chip 20, 1729–1739 (2020).
Pan, P. et al. On‐chip rotation of Caenorhabditis elegans using microfluidic vortices. Adv. Mater. Technol. 6, 2000575 (2021).
Emiliani, V. et al. Optogenetics for light control of biological systems. Nat. Rev. Methods Primers 2, 55 (2022).
Shen, K., Chen, O., Edmunds, J. L., Piech, D. K. & Maharbiz, M. M. Translational opportunities and challenges of invasive electrodes for neural interfaces. Nat. Biomed. Eng. 7, 424–442 (2023).
Lee, J.-u et al. Non-contact long-range magnetic stimulation of mechanosensitive ion channels in freely moving animals. Nat. Mater. 20, 1029–1036 (2021).
Agarwalla, P. et al. Bioinstructive implantable scaffolds for rapid in vivo manufacture and release of CAR-T cells. Nat. Biotechnol. 40, 1250–1258 (2022).
Santos, M. A. et al. Novel fractionated ultrashort thermal exposures with MRI-guided focused ultrasound for treating tumors with thermosensitive drugs. Sci. Adv. 6, eaba5684 (2020).
Wu, Y. et al. Control of the activity of CAR-T cells within tumours via focused ultrasound. Nat. Biomed. Eng. 5, 1336–1347 (2021).
Xu, Z., Khokhlova, T. D., Cho, C. S. & Khokhlova, V. A. Histotripsy: a method for mechanical tissue ablation with ultrasound. Annu. Rev. Biomed. Eng. 26, 141–167 (2024).
Abedi, M. H. et al. Ultrasound-controllable engineered bacteria for cancer immunotherapy. Nat. Commun. 13, 1585 (2022).
Yoo, S., Mittelstein, D. R., Hurt, R. C., Lacroix, J. & Shapiro, M. G. Focused ultrasound excites cortical neurons via mechanosensitive calcium accumulation and ion channel amplification. Nat. Commun. 13, 493 (2022).
Chen, S.-G. et al. Transcranial focused ultrasound pulsation suppresses pentylenetetrazol induced epilepsy in vivo. Brain Stimul. 13, 35–46 (2020).
Weser, R. et al. Three-dimensional heating and patterning dynamics of particles in microscale acoustic tweezers. Lab Chip 22, 2886–2901 (2022).
Winkler, A., Brünig, R., Faust, C., Weser, R. & Schmidt, H. Towards efficient surface acoustic wave (SAW)-based microfluidic actuators. Sens. Actuat. A 247, 259–268 (2016).
Lindken, R., Rossi, M., Große, S. & Westerweel, J. Micro-particle image velocimetry (µPIV): recent developments, applications, and guidelines. Lab Chip 9, 2551–2567 (2009).
Rich, J. et al. Aerosol jet printing of surface acoustic wave microfluidic devices. Microsyst. Nanoeng. 10, 2 (2024).
Zhang, N. et al. Microliter ultrafast centrifuge platform for size-based particle and cell separation and extraction using novel omnidirectional spiral surface acoustic waves. Lab Chip 21, 904–915 (2021).
Möller, D., Degen, N. & Dual, J. Schlieren visualization of ultrasonic standing waves in mm-sized chambers for ultrasonic particle manipulation. J. Nanobiotechnol. 11, 21 (2013).
Li, C. et al. Acoustic-holography-patterned primary hepatocytes possess liver functions. Biomaterials 311, 122691 (2024).
Cui, M., Kim, M., Weisensee, P. B. & Meacham, J. M. Thermal considerations for microswimmer trap-and-release using standing surface acoustic waves. Lab Chip 21, 2534–2543 (2021).
Devendran, C., Carthew, J., Frith, J. E. & Neild, A. Cell adhesion, morphology, and metabolism variation via acoustic exposure within microfluidic cell handling systems. Adv. Sci. 6, 1902326 (2019).
Waag, R. C. A review of tissue characterization from ultrasonic scattering. IEEE Trans. Biomed. Eng. 12, 884–893 (1984).
Doyle, T. E., Tew, A. T., Warnick, K. H. & Carruth, B. L. Simulation of elastic wave scattering in cells and tissues at the microscopic level. J. Acoust. Soc. Am. 125, 1751–1767 (2009).
Collins, D. J. et al. Acoustic tweezers via sub–time-of-flight regime surface acoustic waves. Sci. Adv. 2, e1600089 (2016).
Muller, P. B., Barnkob, R., Jensen, M. J. H. & Bruus, H. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces. Lab Chip 12, 4617–4627 (2012).
Mulvana, H., Cochran, S. & Hill, M. Ultrasound assisted particle and cell manipulation on-chip. Adv. Drug Deliv. Rev. 65, 1600–1610 (2013).
Naquin, T. D. et al. Acoustic separation and concentration of exosomes for nucleotide detection: ASCENDx. Sci. Adv. 10, eadm8597 (2024).
Ma, J., Eglauf, J., Grad, S., Alini, M. & Serra, T. Engineering sensory ganglion multicellular system to model tissue nerve ingrowth. Adv. Sci. 11, 2308478 (2024).
Carpentier, A. et al. Repeated blood–brain barrier opening with a nine-emitter implantable ultrasound device in combination with carboplatin in recurrent glioblastoma: a phase I/II clinical trial. Nat. Commun. 15, 1650 (2024).
Bach, J. S. & Bruus, H. Suppression of acoustic streaming in shape-optimized channels. Phys. Rev. Lett. 124, 214501 (2020).
Zhong, R. et al. Cellular immunity analysis by a modular acoustofluidic platform: CIAMAP. Sci. Adv. 9, eadj9964 (2023).
Bar-Zion, A. et al. Acoustically triggered mechanotherapy using genetically encoded gas vesicles. Nat. Nanotechnol. 16, 1403–1412 (2021).
Augustsson, P., Karlsen, J. T., Su, H.-W., Bruus, H. & Voldman, J. Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping. Nat. Commun. 7, 11556 (2016).
Rezayati Charan, M. & Augustsson, P. Acoustophoretic characterization and separation of blood cells in acoustic impedance gradients. Phys. Rev. Appl. 20, 024066 (2023).
Riaud, A., Baudoin, M., Bou Matar, O., Thomas, J.-L. & Brunet, P. On the influence of viscosity and caustics on acoustic streaming in sessile droplets: an experimental and a numerical study with a cost-effective method. J. Fluid Mech. 821, 384–420 (2017).
Weser, R. & Schmidt, H. In situ surface acoustic wave field probing in microfluidic structures using optical transmission interferometry. J. Appl. Phys. 129, 244503 (2021).
Sachs, S., Baloochi, M., Cierpka, C. & König, J. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves – part I. Lab Chip 22, 2011–2027 (2022).
Hong, Z., Zhang, J. & Drinkwater, B. W. Observation of orbital angular momentum transfer from Bessel-shaped acoustic vortices to diphasic liquid-microparticle mixtures. Phys. Rev. Lett. 114, 214301 (2015).
Riaud, A., Baudoin, M., Thomas, J.-L. & Bou Matar, O. Cyclones and attractive streaming generated by acoustical vortices. Phys. Rev. E 90, 013008 (2014).
Acknowledgements
The authors acknowledge support from the National Institutes of Health (R01GM141055 (T.J.H.), R01GM132603 (T.J.H.), R01HD103727 (T.J.H.), R01GM143439 (T.J.H.), R01GM135486 (T.J.H.), R44AG063643 (T.J.H.), R44OD024963 (T.J.H.), R44HL140800 (T.J.H.) and (R01GM145960 (L.P.L.)), and the National Science Foundation (CMMI-2104295 (T.J.H.)). The authors also acknowledge BioRender.com for the creation of images.
Author information
Authors and Affiliations
Contributions
Introduction (J.R., S.Y., B.W.D., L.P.L. and T.J.H.); Experimentation (B.W.D., S.Y., J.R., L.P.L. and T.J.H.); Results (C.C., S.Y., J.R., B.W.D., L.P.L. and T.J.H.); Applications (S.Y., J.R., B.W.D., L.P.L. and T.J.H.); Reproducibility and data deposition (S.Y., J.R., B.W.D., L.P.L. and T.J.H.); Outlook (T.J.H., B.W.D. and L.P.L.); figure preparation (S.Y., C.C., B.W.D., L.P.L. and T.J.H.); manuscript revision (S.Y., J.R., Y.C., C.C., B.W.D., L.P.L. and T.J.H.); overview of the Primer (T.J.H.).
Corresponding authors
Ethics declarations
Competing interests
T.J.H. has co-founded a start-up company, Ascent Bio-Nano Technologies Inc., to commercialize technologies involving acoustofluidics and acoustic tweezers. The other authors declare no competing interests.
Citation diversity statement
The authors acknowledge that papers authored by scholars from historically excluded groups are systematically under-cited. Every attempt has been made to reference relevant papers in a manner that is equitable in terms of racial, ethnic, gender and geographical representation.
Peer review
Peer review information
Nature Reviews Methods Primers thanks Daniel Ahmed, Hamdi Torun and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Glossary
- Acoustic cavitation
-
The formation, growth and collapse of microscopic gas bubbles in a liquid due to exposure to intense acoustic waves.
- Acoustic holograms
-
Precisely engineered phases or amplitude patterns that shape acoustic wavefronts into desired three-dimensional fields.
- Acoustic lenses
-
Devices designed to focus or shape acoustic waves by altering their propagation path through the principles of sound wave refraction.
- Acoustic phased array
-
A system of multiple acoustic transducers that emit sound waves with precisely controlled relative phase shifts to dynamically shape and steer acoustic fields.
- Acoustic vortices
-
Swirling sound waves that carry orbital angular momentum, possessing a helical phase front that can trap, rotate or manipulate objects in fluids or air.
- Atomic force microscopy
-
(AFM). A high-resolution technique that uses a sharp nanometric probe to apply force on a system and monitors the resulting deflection of the probe by collecting light reflected from it to infer mechanical properties of the system in analysis, such as stiffness, adhesion and elasticity at the nanoscale.
- Bisymmetric coherent acoustic tweezers
-
Acoustic tweezers that generate twofold symmetric patterns by applying excitations with fixed phase and amplitude differences.
- Breathing mode
-
A vibrational mode in which a circular or cylindrical piezoelectric transducer undergoes uniform radial expansion and contraction in response to an applied alternating voltage.
- Depth of focus
-
The distance between the points near and far from the focal point within which the acoustic intensity remains sufficiently concentrated.
- Inverse filtering
-
A technique for synthesizing complex signals by using a set of independently controllable sources, and solving the inverse problem to determine the optimal input signals required to produce a desired wave field.
- Micropipette aspiration
-
A technique that uses a fine, sharp pipette to apply suction to a single particle or cell, allowing precise manipulation and measurement of mechanical properties such as elasticity and deformability by analysing the particle’s response to the applied force.
- Optical coherence tomography
-
A non-invasive imaging technique that captures high-resolution, cross-sectional images of biological tissues using a low-coherence light source such as a superluminescent diode or a femtosecond laser.
- Optical tweezers
-
Precise laser-based tools that use focused light beams to generate controlled optical forces to trap and manipulate dielectric particles.
- Pressure nodes
-
Points in a standing wave where the acoustic pressure remains constant (minimum variation), as opposed to antinodes, where it fluctuates maximally.
- Standing waves
-
Waves that remain stationary in space, for example, due to the superposition of two counter-propagating waves of the same frequency and amplitude.
- Stiffness
-
A measure of the strength of the forces holding a particle within an optical or acoustic trap, defined as the restoring force exerted per unit displacement from its equilibrium position.
- Thickness mode
-
A vibrational mode of a plate or disc piezoelectric transducer consisting of expansions and contractions along the plate’s or disc’s thickness direction, and generating longitudinal acoustic waves when an alternating voltage is applied.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Yang, S., Rufo, J., Chen, Y. et al. Acoustic tweezers for advancing precision biology and medicine. Nat Rev Methods Primers 5, 49 (2025). https://doi.org/10.1038/s43586-025-00415-w
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1038/s43586-025-00415-w