+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Acoustic tweezers for advancing precision biology and medicine

Abstract

Acoustic tweezers are devices that use acoustic waves for contactless particle trapping and manipulation. They provide advantages typical of ultrasound-based techniques, such as minimal thermal effects and high biocompatibility, making them ideal for handling fragile biological samples. By using different transducer configurations and adjusting acoustic parameters, acoustic tweezers can operate on particles across various scales — from nanometres to millimetres — meeting several engineering, biological and medical needs. However, the use of acoustic tweezers in biomedical contexts still requires further optimization to broaden their applications and achieve an impact comparable to that of optical tweezers. This Primer discusses the fundamental principles of acoustic tweezers and outlines their typical experimental set-ups. We showcase advances in applications such as force spectroscopy, single-cell analysis, tissue engineering, organismal studies and in vivo procedures. Additionally, we address reproducibility challenges, suggest data-sharing standards and examine current technological limitations. Our goal is to empower researchers with the foundational knowledge needed to effectively apply acoustic tweezers, fostering their broader adoption in precision biology and medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Acoustic tweezers in precision biology and medicine.
Fig. 2: Two-dimensional in-plane acoustic tweezers.
Fig. 3: Three-dimensional beam-forming acoustic tweezers.
Fig. 4: Schematic of acoustic tweezers applications.
Fig. 5: Representative results from applications of acoustic tweezers.
Fig. 6: Examples of acoustic tweezers in precision biology and medicine.

Similar content being viewed by others

References

  1. Friend, J. & Yeo, L. Y. Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev. Mod. Phys. 83, 647–704 (2011).

    Article  ADS  Google Scholar 

  2. Bruus, H. et al. Forthcoming Lab on a Chip tutorial series on acoustofluidics: acoustofluidics—exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation. Lab Chip 11, 3579–3580 (2011).

    Article  Google Scholar 

  3. Rufo, J., Cai, F., Friend, J., Wiklund, M. & Huang, T. J. Acoustofluidics for biomedical applications. Nat. Rev. Methods Primers 2, 30 (2022). This paper provides an introduction on acoustofluidics for biomedical applications, with a detailed discussion of acoustic radiation forces, acoustic streaming and their roles in point-of-care diagnostics, serving as a complementary resource to this Primer.

    Article  Google Scholar 

  4. Ahmed, D. et al. Neutrophil-inspired propulsion in a combined acoustic and magnetic field. Nat. Commun. 8, 770 (2017).

    Article  ADS  Google Scholar 

  5. Fan, X.-D., Zou, Z. & Zhang, L. Acoustic vortices in inhomogeneous media. Phys. Rev. Res. 1, 032014 (2019).

    Article  Google Scholar 

  6. Glynne-Jones, P., Boltryk, R. J., Harris, N. R., Cranny, A. W. & Hill, M. Mode-switching: a new technique for electronically varying the agglomeration position in an acoustic particle manipulator. Ultrasonics 50, 68–75 (2010).

    Article  Google Scholar 

  7. Gu, Y. et al. Acoustofluidic centrifuge for nanoparticle enrichment and separation. Sci. Adv. 7, eabc0467 (2021).

    Article  ADS  Google Scholar 

  8. Franke, T., Braunmüller, S., Schmid, L., Wixforth, A. & Weitz, D. Surface acoustic wave actuated cell sorting (SAWACS). Lab Chip 10, 789–794 (2010).

    Article  Google Scholar 

  9. Hao, N. et al. Acoustofluidic multimodal diagnostic system for Alzheimer’s disease. Biosens. Bioelectron. 196, 113730 (2022).

    Article  Google Scholar 

  10. Wiklund, M. & Hertz, H. M. Ultrasonic enhancement of bead-based bioaffinity assays. Lab Chip 6, 1279–1292 (2006).

    Article  Google Scholar 

  11. Wang, Z. et al. Acoustofluidic salivary exosome isolation: a liquid biopsy compatible approach for human papillomavirus–associated oropharyngeal cancer detection. J. Mol. Diagn. 22, 50–59 (2020).

    Article  Google Scholar 

  12. Garg, N. et al. Whole-blood sorting, enrichment and in situ immunolabeling of cellular subsets using acoustic microstreaming. Microsyst. Nanoeng. 4, 17085 (2018).

    Article  Google Scholar 

  13. Ren, L. et al. Standing surface acoustic wave (SSAW)‐based fluorescence‐activated cell sorter. Small 14, 1801996 (2018).

    Article  Google Scholar 

  14. Shpak, O. et al. Acoustic droplet vaporization is initiated by superharmonic focusing. Proc. Natl Acad. Sci. USA 111, 1697–1702 (2014).

    Article  ADS  Google Scholar 

  15. Zhang, J. et al. Surface acoustic waves enable rotational manipulation of Caenorhabditis elegans. Lab Chip 19, 984–992 (2019).

    Article  Google Scholar 

  16. Neužil, P., Giselbrecht, S., Länge, K., Huang, T. J. & Manz, A. Revisiting lab-on-a-chip technology for drug discovery. Nat. Rev. Drug Discov. 11, 620–632 (2012).

    Article  Google Scholar 

  17. Li, J. et al. Three dimensional acoustic tweezers with vortex streaming. Commun. Phys. 4, 113 (2021).

    Article  Google Scholar 

  18. Sitters, G. et al. Acoustic force spectroscopy. Nat. Methods 12, 47–50 (2015).

    Article  Google Scholar 

  19. Collins, D. J. et al. Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat. Commun. 6, 8686 (2015).

    Article  ADS  Google Scholar 

  20. Chen, C. et al. Acoustofluidic rotational tweezing enables high-speed contactless morphological phenotyping of zebrafish larvae. Nat. Commun. 12, 1118 (2021). This study explores the use of acoustic streaming to achieve contactless and rapid rotation of zebrafish larvae, enabling multispectral imaging of the body and internal organs for quantitative evaluation of key morphological characteristics.

    Article  ADS  Google Scholar 

  21. Cartagena-Rivera, A. X., Van Itallie, C. M., Anderson, J. M. & Chadwick, R. S. Apical surface supracellular mechanical properties in polarized epithelium using noninvasive acoustic force spectroscopy. Nat. Commun. 8, 1030 (2017).

    Article  ADS  Google Scholar 

  22. Kamsma, D. et al. Single-cell acoustic force spectroscopy: resolving kinetics and strength of T cell adhesion to fibronectin. Cell Rep. 24, 3008–3016 (2018).

    Article  Google Scholar 

  23. Guo, F. et al. Controlling cell–cell interactions using surface acoustic waves. Proc. Natl Acad. Sci. USA 112, 43–48 (2015).

    Article  ADS  Google Scholar 

  24. Guo, F. et al. Three-dimensional manipulation of single cells using surface acoustic waves. Proc. Natl Acad. Sci. USA 113, 1522–1527 (2016).

    Article  ADS  Google Scholar 

  25. Yang, S. et al. Harmonic acoustics for dynamic and selective particle manipulation. Nat. Mater. 21, 540–546 (2022). This study presents the development of harmonic acoustic tweezers capable of reversible pairing and separation of single cells.

    Article  ADS  Google Scholar 

  26. Yang, S. et al. Acoustic tweezers for high-throughput single-cell analysis. Nat. Protoc. 18, 2441–2458 (2023).

    Article  Google Scholar 

  27. Chen, K. et al. Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers. Lab Chip 16, 2636–2643 (2016).

    Article  Google Scholar 

  28. Tian, Z. et al. Generating multifunctional acoustic tweezers in Petri dishes for contactless, precise manipulation of bioparticles. Sci. Adv. 6, eabb0494 (2020).

    Article  ADS  Google Scholar 

  29. Ao, Z. et al. Rapid profiling of tumor‐immune interaction using acoustically assembled patient-derived cell clusters. Adv. Sci. 9, 2201478 (2022).

    Article  Google Scholar 

  30. He, Y. et al. Acoustofluidic interfaces for the mechanobiological secretome of MSCs. Nat. Commun. 14, 7639 (2023).

    Article  ADS  Google Scholar 

  31. Kuang, X. et al. Self-enhancing sono-inks enable deep-penetration acoustic volumetric printing. Science 382, 1148–1155 (2023).

    Article  ADS  Google Scholar 

  32. O’Reilly, M. A. Exploiting the mechanical effects of ultrasound for noninvasive therapy. Science 385, eadp7206 (2024).

    Article  Google Scholar 

  33. Mitragotri, S. Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat. Rev. Drug Discov. 4, 255–260 (2005). This article reviews the application of ultrasound in drug delivery and provides a partial summary of the ultrasound frequencies used in medical applications.

    Article  Google Scholar 

  34. Shi, J. et al. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip 9, 2890–2895 (2009).

    Article  Google Scholar 

  35. Nilsson, J., Evander, M., Hammarström, B. & Laurell, T. Review of cell and particle trapping in microfluidic systems. Anal. Chim. Acta 649, 141–157 (2009).

    Article  Google Scholar 

  36. Ding, X. et al. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proc. Natl Acad. Sci. USA 109, 11105–11109 (2012).

    Article  ADS  Google Scholar 

  37. Yeo, L. Y. & Friend, J. R. Surface acoustic wave microfluidics. Annu. Rev. Fluid Mech. 46, 379–406 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  38. Ozcelik, A. et al. Acoustic tweezers for the life sciences. Nat. Methods 15, 1021–1028 (2018).

    Article  Google Scholar 

  39. Ullmann, D. Life and work of EFF Chladni. Eur. Phys. J. Spec. Top. 145, 25–32 (2007).

    Article  Google Scholar 

  40. Faraday, M. On the forms and states assumed by fluids in contact with vibrating elastic surfaces. Phil. Trans. R. Soc. Lond. 121, 319–340 (1831).

    ADS  Google Scholar 

  41. Rayleigh, Lord The Theory of Sound 2nd edn, Vol. 2 (Dover, 1896).

  42. Sarvazyan, A. P., Rudenko, O. V. & Nyborg, W. L. Biomedical applications of radiation force of ultrasound: historical roots and physical basis. Ultrasound Med. Biol. 36, 1379–1394 (2010).

    Article  Google Scholar 

  43. Wu, J. Acoustical tweezers. J. Acoust. Soc. Am. 89, 2140–2143 (1991).

    Article  ADS  Google Scholar 

  44. Hertz, H. M. Standing‐wave acoustic trap for nonintrusive positioning of microparticles. J. Appl. Phys. 78, 4845–4849 (1995).

    Article  ADS  Google Scholar 

  45. Marzo, A. et al. Holographic acoustic elements for manipulation of levitated objects. Nat. Commun. 6, 8661 (2015).

    Article  ADS  Google Scholar 

  46. Marzo, A. & Drinkwater, B. W. Holographic acoustic tweezers. Proc. Natl Acad. Sci. USA 116, 84–89 (2019). This study describes the use of holographic acoustic tweezers for the reconfigurable manipulation of individual particles in air.

    Article  ADS  Google Scholar 

  47. Marzo, A., Caleap, M. & Drinkwater, B. W. Acoustic virtual vortices with tunable orbital angular momentum for trapping of Mie particles. Phys. Rev. Lett. 120, 044301 (2018).

    Article  ADS  Google Scholar 

  48. Melde, K., Mark, A. G., Qiu, T. & Fischer, P. Holograms for acoustics. Nature 537, 518–522 (2016). This paper reports the development of acoustic holograms capable of generating complex 3D pressure and phase distributions for object manipulation.

    Article  ADS  Google Scholar 

  49. Baudoin, M. et al. Folding a focalized acoustical vortex on a flat holographic transducer: miniaturized selective acoustical tweezers. Sci. Adv. 5, eaav1967 (2019).

    Article  ADS  Google Scholar 

  50. Baudoin, M. et al. Spatially selective manipulation of cells with single-beam acoustical tweezers. Nat. Commun. 11, 4244 (2020).

    Article  ADS  Google Scholar 

  51. Jooss, V. M., Bolten, J. S., Huwyler, J. & Ahmed, D. In vivo acoustic manipulation of microparticles in zebrafish embryos. Sci. Adv. 8, eabm2785 (2022).

    Article  Google Scholar 

  52. Wu, M. et al. Sound innovations for biofabrication and tissue engineering. Microsyst. Nanoeng. 10, 170 (2024).

    Article  Google Scholar 

  53. Rufo, J., Zhang, P., Zhong, R., Lee, L. P. & Huang, T. J. A sound approach to advancing healthcare systems: the future of biomedical acoustics. Nat. Commun. 13, 3459 (2022).

    Article  ADS  Google Scholar 

  54. Del Campo Fonseca, A. et al. Ultrasound trapping and navigation of microrobots in the mouse brain vasculature. Nat. Commun. 14, 5889 (2023).

    Article  ADS  Google Scholar 

  55. Chu, Y. S. et al. Force measurements in E-cadherin–mediated cell doublets reveal rapid adhesion strengthened by actin cytoskeleton remodeling through Rac and Cdc42. J. Cell Biol. 167, 1183–1194 (2004).

    Article  Google Scholar 

  56. Liu, B., Chen, W., Evavold, B. D. & Zhu, C. Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling. Cell 157, 357–368 (2014).

    Article  Google Scholar 

  57. Aimon, S. et al. Membrane shape modulates transmembrane protein distribution. Dev. Cell 28, 212–218 (2014).

    Article  Google Scholar 

  58. Hosseini, B. H. et al. Immune synapse formation determines interaction forces between T cells and antigen-presenting cells measured by atomic force microscopy. Proc. Natl Acad. Sci. USA 106, 17852–17857 (2009).

    Article  ADS  Google Scholar 

  59. Friedrichs, J., Helenius, J. & Muller, D. J. Quantifying cellular adhesion to extracellular matrix components by single-cell force spectroscopy. Nat. Protoc. 5, 1353–1361 (2010).

    Article  Google Scholar 

  60. Guillaume-Gentil, O. et al. Force-controlled manipulation of single cells: from AFM to FluidFM. Trends Biotechnol. 32, 381–388 (2014).

    Article  Google Scholar 

  61. Skelley, A. M., Kirak, O., Suh, H., Jaenisch, R. & Voldman, J. Microfluidic control of cell pairing and fusion. Nat. Methods. 6, 147–152 (2009).

    Article  Google Scholar 

  62. Zhang, K., Chou, C.-K., Xia, X., Hung, M.-C. & Qin, L. Block-cell-printing for live single-cell printing. Proc. Natl Acad. Sci. USA 111, 2948–2953 (2014).

    Article  ADS  Google Scholar 

  63. Dholakia, K. & Reece, P. Optical micromanipulation takes hold. Nano today 1, 18–27 (2006).

    Article  Google Scholar 

  64. Feng, Y. et al. Mechanosensing drives acuity of αβ T-cell recognition. Proc. Natl Acad. Sci. USA 114, E8204–E8213 (2017).

    Article  Google Scholar 

  65. Ashkin, A., Dziedzic, J. M. & Yamane, T. Optical trapping and manipulation of single cells using infrared laser beams. Nature 330, 769–771 (1987).

    Article  ADS  Google Scholar 

  66. Guck, J. et al. The optical stretcher: a novel laser tool to micromanipulate cells. Biophys. J. 81, 767–784 (2001).

    Article  ADS  Google Scholar 

  67. Dholakia, K., Drinkwater, B. W. & Ritsch-Marte, M. Comparing acoustic and optical forces for biomedical research. Nat. Rev. Phys. 2, 480–491 (2020). This review paper provides an overview of optical and acoustic tweezers by comparing the respective forces, discussing the limitations and advantages of each technique, and serving as a valuable complement to this Primer.

    Article  Google Scholar 

  68. Zhang, Z. & Ahmed, D. Light-driven high-precision cell adhesion kinetics. Light Sci. Appl. 11, 266 (2022).

    Article  ADS  Google Scholar 

  69. Shi, Y. et al. Nanometer-precision linear sorting with synchronized optofluidic dual barriers. Sci. Adv. 4, eaao0773 (2018).

    Article  ADS  Google Scholar 

  70. Shi, Y. et al. Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency measurement. Nat. Commun. 9, 815 (2018).

    Article  ADS  Google Scholar 

  71. Neuman, K. C. & Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods. 5, 491–505 (2008).

    Article  Google Scholar 

  72. De Vlaminck, I. & Dekker, C. Recent advances in magnetic tweezers. Annu. Rev. Biophys. 41, 453–472 (2012).

    Article  Google Scholar 

  73. Tapia-Rojo, R., Mora, M. & Garcia-Manyes, S. Single-molecule magnetic tweezers to probe the equilibrium dynamics of individual proteins at physiologically relevant forces and timescales. Nat. Protoc. 19, 1779–1806 (2024).

    Article  Google Scholar 

  74. Pohl, H. A. & Crane, J. S. Dielectrophoresis of cells. Biophys. J. 11, 711–727 (1971).

    Article  ADS  Google Scholar 

  75. Kim, D., Sonker, M. & Ros, A. Dielectrophoresis: from molecular to micrometer-scale analytes. Anal. Chem. 91, 277–295 (2019).

    Article  Google Scholar 

  76. Kim, U. et al. Selection of mammalian cells based on their cell-cycle phase using dielectrophoresis. Proc. Natl Acad. Sci. USA 104, 20708–20712 (2007).

    Article  ADS  Google Scholar 

  77. Laurell, T., Petersson, F. & Nilsson, A. Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem. Soc. Rev. 36, 492–506 (2007).

    Article  Google Scholar 

  78. Undvall Anand, E. et al. Two-step acoustophoresis separation of live tumor cells from whole blood. Anal. Chem. 93, 17076–17085 (2021).

    Article  Google Scholar 

  79. Shi, J., Huang, H., Stratton, Z., Huang, Y. & Huang, T. J. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 9, 3354–3359 (2009).

    Article  Google Scholar 

  80. Ding, X. et al. Cell separation using tilted-angle standing surface acoustic waves. Proc. Natl Acad. Sci. USA 111, 12992–12997 (2014).

    Article  ADS  Google Scholar 

  81. Li, P. et al. Acoustic separation of circulating tumor cells. Proc. Natl Acad. Sci. USA 112, 4970–4975 (2015).

    Article  ADS  Google Scholar 

  82. Wu, M. et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc. Natl Acad. Sci. USA 114, 10584–10589 (2017).

    Article  ADS  Google Scholar 

  83. Xia, J. et al. Acoustofluidic virus isolation via Bessel beam excitation separation technology. ACS Nano 18, 22596–22607 (2024).

    Article  Google Scholar 

  84. Tian, Z. et al. Wave number–spiral acoustic tweezers for dynamic and reconfigurable manipulation of particles and cells. Sci. Adv. 5, eaau6062 (2019).

    Article  ADS  Google Scholar 

  85. Johnson, K. E. et al. A simple, validated approach for design of two-dimensional periodic particle patterns via acoustophoresis. Mater. Des. 232, 112165 (2023).

    Article  Google Scholar 

  86. Joshi, S. V., Sadeghpour, S., Kuznetsova, N., Wang, C. & Kraft, M. Flexible micromachined ultrasound transducers (MUTs) for biomedical applications. Microsyst. Nanoeng. 11, 9 (2025).

    Article  Google Scholar 

  87. Jo, Y. et al. General‐purpose ultrasound neuromodulation system for chronic, closed‐loop preclinical studies in freely behaving rodents. Adv. Sci. 9, 2202345 (2022).

    Article  Google Scholar 

  88. Yang, Y. et al. Self-adaptive virtual microchannel for continuous enrichment and separation of nanoparticles. Sci. Adv. 8, eabn8440 (2022).

    Article  Google Scholar 

  89. Yang, Y. et al. Manipulation of single cells via a stereo acoustic streaming tunnel (SteAST). Microsyst. Nanoeng. 8, 88 (2022).

    Article  ADS  Google Scholar 

  90. Guo, X. et al. Controllable cell deformation using acoustic streaming for membrane permeability modulation. Adv. Sci. 8, 2002489 (2021).

    Article  Google Scholar 

  91. Armstrong, J. P. et al. Engineering anisotropic muscle tissue using acoustic cell patterning. Adv. Mater. 30, 1802649 (2018).

    Article  Google Scholar 

  92. Courtney, C. R. P. et al. Dexterous manipulation of microparticles using Bessel-function acoustic pressure fields. Appl. Phys. Lett. 102, 123508 (2013).

    Article  ADS  Google Scholar 

  93. Raymond, S. J. et al. A deep learning approach for designed diffraction-based acoustic patterning in microchannels. Sci. Rep. 10, 8745 (2020).

    Article  ADS  Google Scholar 

  94. Courtney, C. R. P. et al. Independent trapping and manipulation of microparticles using dexterous acoustic tweezers. Appl. Phys. Lett. 104, 154103 (2014).

    Article  ADS  Google Scholar 

  95. Yang, Y. et al. In-vivo programmable acoustic manipulation of genetically engineered bacteria. Nat. Commun. 14, 3297 (2023). This study demonstrates the use of an acoustic phased array for in vivo manipulation of genetically engineered bacteria.

    Article  ADS  Google Scholar 

  96. Cox, L., Croxford, A. & Drinkwater, B. W. Dynamic patterning of microparticles with acoustic impulse control. Sci. Rep. 12, 14549 (2022).

    Article  ADS  Google Scholar 

  97. Riaud, A. et al. Anisotropic swirling surface acoustic waves from inverse filtering for on-chip generation of acoustic vortices. Phys. Rev. Appl. 4, 034004 (2015).

    Article  ADS  Google Scholar 

  98. Cummer, S. A., Christensen, J. & Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1, 16001 (2016).

    Article  ADS  Google Scholar 

  99. Ortega-Sandoval, M. E. et al. Ultrasonic manipulation of particles and cell aggregates with simultaneous acoustic visualization. Appl. Phys. Lett. 124, 204102 (2024).

    Article  ADS  Google Scholar 

  100. Gu, Y. et al. Acoustofluidic holography for micro-to nanoscale particle manipulation. ACS Nano 14, 14635–14645 (2020).

    Article  Google Scholar 

  101. Ma, Z. et al. Spatial ultrasound modulation by digitally controlling microbubble arrays. Nat. Commun. 11, 4537 (2020).

    Article  ADS  Google Scholar 

  102. Yang, Y. et al. Self-navigated 3D acoustic tweezers in complex media based on time reversal. Research 2021, 9781394 (2021).

    Article  ADS  Google Scholar 

  103. Baresch, D., Thomas, J.-L. & Marchiano, R. Observation of a single-beam gradient force acoustical trap for elastic particles: acoustical tweezers. Phys. Rev. Lett. 116, 024301 (2016).

    Article  ADS  Google Scholar 

  104. Chen, S., Wang, Q., Wang, Q., Zhou, J. & Riaud, A. Numerical simulation of the radiation force from transient acoustic fields: application to laser-guided acoustic tweezers. Phys. Rev. Appl. 19, 054057 (2023).

    Article  ADS  Google Scholar 

  105. Manneberg, O. et al. A three-dimensional ultrasonic cage for characterization of individual cells. Appl. Phys. Lett. 93, 063901 (2008).

    Article  ADS  Google Scholar 

  106. Ohlin, M., Christakou, A. E., Frisk, T., Önfelt, B. & Wiklund, M. Influence of acoustic streaming on ultrasonic particle manipulation in a 100-well ring-transducer microplate. J. Micromech. Microeng. 23, 035008 (2013).

    Article  ADS  Google Scholar 

  107. Ghanem, M. A. et al. Noninvasive acoustic manipulation of objects in a living body. Proc. Natl Acad. Sci. USA 117, 16848–16855 (2020). This report describes the use of acoustic tweezers to steer 3 mm-diameter glass spheres along preprogrammed paths within the urinary bladders of live pigs.

    Article  ADS  Google Scholar 

  108. Mao, Z. et al. Enriching nanoparticles via acoustofluidics. ACS Nano 11, 603–612 (2017).

    Article  Google Scholar 

  109. Baasch, T. & Dual, J. Acoustofluidic particle dynamics: beyond the Rayleigh limit. J. Acoust. Soc. Am. 143, 509–519 (2018).

    Article  ADS  Google Scholar 

  110. Deng, Z., Kondalkar, V. V., Cierpka, C., Schmidt, H. & König, J. From rectangular to diamond shape: on the three-dimensional and size-dependent transformation of patterns formed by single particles trapped in microfluidic acoustic tweezers. Lab Chip 23, 2154–2160 (2023).

    Article  Google Scholar 

  111. Zhang, J. et al. A solution to the biophysical fractionation of extracellular vesicles: acoustic nanoscale separation via wave-pillar excitation resonance (ANSWER). Sci. Adv. 8, eade0640 (2022).

    Article  ADS  Google Scholar 

  112. Kvåle Løvmo, M. et al. Ultrasound-induced reorientation for multi-angle optical coherence tomography. Nat. Commun. 15, 2391 (2024).

    Article  ADS  Google Scholar 

  113. Ahmed, D. et al. Rotational manipulation of single cells and organisms using acoustic waves. Nat. Commun. 7, 11085 (2016). This study illustrates the use of acoustic streaming to precisely rotate colloids, cells and entire organisms.

    Article  ADS  Google Scholar 

  114. Pan, H., Mei, D., Xu, C., Han, S. & Wang, Y. Bisymmetric coherent acoustic tweezers based on modulation of surface acoustic waves for dynamic and reconfigurable cluster manipulation of particles and cells. Lab Chip 23, 215–228 (2023).

    Article  Google Scholar 

  115. Ma, Z. et al. Acoustic holographic cell patterning in a biocompatible hydrogel. Adv. Mater. 32, 1904181 (2020).

    Article  Google Scholar 

  116. Gao, Z. et al. A multifunctional acoustic tweezer for heterogenous assembloids patterning. Small Struct. 4, 2200288 (2023).

    Article  Google Scholar 

  117. Pan, H., Mei, D., Xu, C., Li, X. & Wang, Y. Acoustic tweezers using bisymmetric coherent surface acoustic waves for dynamic and reconfigurable manipulation of particle multimers. J. Colloid Interface Sci. 643, 115–123 (2023).

    Article  ADS  Google Scholar 

  118. Andrade, M. A. B., Bernassau, A. L. & Adamowski, J. C. Acoustic levitation of a large solid sphere. Appl. Phys. Lett. 109, 044101 (2016).

    Article  ADS  Google Scholar 

  119. Marinko, J. T. et al. Folding and misfolding of human membrane proteins in health and disease: from single molecules to cellular proteostasis. Chem. Rev. 119, 5537–5606 (2019).

    Article  Google Scholar 

  120. Chattopadhyay, P. K., Gierahn, T. M., Roederer, M. & Love, J. C. Single-cell technologies for monitoring immune systems. Nat. Immunol. 15, 128–135 (2014).

    Article  Google Scholar 

  121. Zenobi, R. Single-cell metabolomics: analytical and biological perspectives. Science 342, 1243259 (2013).

    Article  Google Scholar 

  122. Barrow, A. D. et al. Natural killer cells control tumor growth by sensing a growth factor. Cell 172, 534–548.e19 (2018).

    Article  Google Scholar 

  123. Landsberg, J. et al. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature 490, 412–416 (2012).

    Article  ADS  Google Scholar 

  124. Galbraith, C. G., Yamada, K. M. & Galbraith, J. A. Polymerizing actin fibers position integrins primed to probe for adhesion sites. Science 315, 992–995 (2007).

    Article  ADS  Google Scholar 

  125. Cunha, L. D. et al. LC3-associated phagocytosis in myeloid cells promotes tumor immune tolerance. Cell 175, 429–441.e16 (2018).

    Article  Google Scholar 

  126. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373–384 (2010).

    Article  Google Scholar 

  127. Khademhosseini, A. & Langer, R. A decade of progress in tissue engineering. Nat. Protoc. 11, 1775–1781 (2016).

    Article  Google Scholar 

  128. Berthiaume, F., Maguire, T. J. & Yarmush, M. L. Tissue engineering and regenerative medicine: history, progress, and challenges. Annu. Rev. Chem. Biomol. Eng. 2, 403–430 (2011).

    Article  Google Scholar 

  129. Peck, M., Dusserre, N., McAllister, T. N. & L’Heureux, N. Tissue engineering by self-assembly. Mater. Today 14, 218–224 (2011).

    Article  Google Scholar 

  130. Hollister, S. J. Porous scaffold design for tissue engineering. Nat. Mater. 4, 518–524 (2005).

    Article  ADS  Google Scholar 

  131. Sears, N. A., Seshadri, D. R., Dhavalikar, P. S. & Cosgriff-Hernandez, E. A review of three-dimensional printing in tissue engineering. Tissue Eng. Part B Rev. 22, 298–310 (2016).

    Article  Google Scholar 

  132. Leung, C. M. et al. A guide to the organ-on-a-chip. Nat. Rev. Methods Primers 2, 33 (2022).

    Article  Google Scholar 

  133. Kaletta, T. & Hengartner, M. O. Finding function in novel targets: C. elegans as a model organism. Nat. Rev. Drug Discov. 5, 387–399 (2006).

    Article  Google Scholar 

  134. Lieschke, G. J. & Currie, P. D. Animal models of human disease: zebrafish swim into view. Nat. Rev. Genet. 8, 353–367 (2007).

    Article  Google Scholar 

  135. Pan, P. et al. Robotic microinjection enables large-scale transgenic studies of Caenorhabditis elegans. Nat. Commun. 15, 8848 (2024).

    Article  Google Scholar 

  136. Zhao, P. et al. Femtosecond laser microdissection for isolation of regenerating C. elegans neurons for single-cell RNA sequencing. Nat. Methods 20, 590–599 (2023).

    Article  Google Scholar 

  137. Zhang, J. et al. Fluorescence-based sorting of Caenorhabditis elegans via acoustofluidics. Lab Chip 20, 1729–1739 (2020).

    Article  Google Scholar 

  138. Pan, P. et al. On‐chip rotation of Caenorhabditis elegans using microfluidic vortices. Adv. Mater. Technol. 6, 2000575 (2021).

    Article  Google Scholar 

  139. Emiliani, V. et al. Optogenetics for light control of biological systems. Nat. Rev. Methods Primers 2, 55 (2022).

    Article  Google Scholar 

  140. Shen, K., Chen, O., Edmunds, J. L., Piech, D. K. & Maharbiz, M. M. Translational opportunities and challenges of invasive electrodes for neural interfaces. Nat. Biomed. Eng. 7, 424–442 (2023).

    Article  Google Scholar 

  141. Lee, J.-u et al. Non-contact long-range magnetic stimulation of mechanosensitive ion channels in freely moving animals. Nat. Mater. 20, 1029–1036 (2021).

    Article  ADS  Google Scholar 

  142. Agarwalla, P. et al. Bioinstructive implantable scaffolds for rapid in vivo manufacture and release of CAR-T cells. Nat. Biotechnol. 40, 1250–1258 (2022).

    Article  Google Scholar 

  143. Santos, M. A. et al. Novel fractionated ultrashort thermal exposures with MRI-guided focused ultrasound for treating tumors with thermosensitive drugs. Sci. Adv. 6, eaba5684 (2020).

    Article  ADS  Google Scholar 

  144. Wu, Y. et al. Control of the activity of CAR-T cells within tumours via focused ultrasound. Nat. Biomed. Eng. 5, 1336–1347 (2021).

    Article  Google Scholar 

  145. Xu, Z., Khokhlova, T. D., Cho, C. S. & Khokhlova, V. A. Histotripsy: a method for mechanical tissue ablation with ultrasound. Annu. Rev. Biomed. Eng. 26, 141–167 (2024).

    Article  Google Scholar 

  146. Abedi, M. H. et al. Ultrasound-controllable engineered bacteria for cancer immunotherapy. Nat. Commun. 13, 1585 (2022).

    Article  ADS  Google Scholar 

  147. Yoo, S., Mittelstein, D. R., Hurt, R. C., Lacroix, J. & Shapiro, M. G. Focused ultrasound excites cortical neurons via mechanosensitive calcium accumulation and ion channel amplification. Nat. Commun. 13, 493 (2022).

    Article  ADS  Google Scholar 

  148. Chen, S.-G. et al. Transcranial focused ultrasound pulsation suppresses pentylenetetrazol induced epilepsy in vivo. Brain Stimul. 13, 35–46 (2020).

    Article  Google Scholar 

  149. Weser, R. et al. Three-dimensional heating and patterning dynamics of particles in microscale acoustic tweezers. Lab Chip 22, 2886–2901 (2022).

    Article  Google Scholar 

  150. Winkler, A., Brünig, R., Faust, C., Weser, R. & Schmidt, H. Towards efficient surface acoustic wave (SAW)-based microfluidic actuators. Sens. Actuat. A 247, 259–268 (2016).

    Article  Google Scholar 

  151. Lindken, R., Rossi, M., Große, S. & Westerweel, J. Micro-particle image velocimetry (µPIV): recent developments, applications, and guidelines. Lab Chip 9, 2551–2567 (2009).

    Article  Google Scholar 

  152. Rich, J. et al. Aerosol jet printing of surface acoustic wave microfluidic devices. Microsyst. Nanoeng. 10, 2 (2024).

    Article  ADS  Google Scholar 

  153. Zhang, N. et al. Microliter ultrafast centrifuge platform for size-based particle and cell separation and extraction using novel omnidirectional spiral surface acoustic waves. Lab Chip 21, 904–915 (2021).

    Article  Google Scholar 

  154. Möller, D., Degen, N. & Dual, J. Schlieren visualization of ultrasonic standing waves in mm-sized chambers for ultrasonic particle manipulation. J. Nanobiotechnol. 11, 21 (2013).

    Article  Google Scholar 

  155. Li, C. et al. Acoustic-holography-patterned primary hepatocytes possess liver functions. Biomaterials 311, 122691 (2024).

    Article  Google Scholar 

  156. Cui, M., Kim, M., Weisensee, P. B. & Meacham, J. M. Thermal considerations for microswimmer trap-and-release using standing surface acoustic waves. Lab Chip 21, 2534–2543 (2021).

    Article  Google Scholar 

  157. Devendran, C., Carthew, J., Frith, J. E. & Neild, A. Cell adhesion, morphology, and metabolism variation via acoustic exposure within microfluidic cell handling systems. Adv. Sci. 6, 1902326 (2019).

    Article  Google Scholar 

  158. Waag, R. C. A review of tissue characterization from ultrasonic scattering. IEEE Trans. Biomed. Eng. 12, 884–893 (1984).

    Article  Google Scholar 

  159. Doyle, T. E., Tew, A. T., Warnick, K. H. & Carruth, B. L. Simulation of elastic wave scattering in cells and tissues at the microscopic level. J. Acoust. Soc. Am. 125, 1751–1767 (2009).

    Article  ADS  Google Scholar 

  160. Collins, D. J. et al. Acoustic tweezers via sub–time-of-flight regime surface acoustic waves. Sci. Adv. 2, e1600089 (2016).

    Article  ADS  Google Scholar 

  161. Muller, P. B., Barnkob, R., Jensen, M. J. H. & Bruus, H. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces. Lab Chip 12, 4617–4627 (2012).

    Article  Google Scholar 

  162. Mulvana, H., Cochran, S. & Hill, M. Ultrasound assisted particle and cell manipulation on-chip. Adv. Drug Deliv. Rev. 65, 1600–1610 (2013).

    Article  Google Scholar 

  163. Naquin, T. D. et al. Acoustic separation and concentration of exosomes for nucleotide detection: ASCENDx. Sci. Adv. 10, eadm8597 (2024).

    Article  Google Scholar 

  164. Ma, J., Eglauf, J., Grad, S., Alini, M. & Serra, T. Engineering sensory ganglion multicellular system to model tissue nerve ingrowth. Adv. Sci. 11, 2308478 (2024).

    Article  Google Scholar 

  165. Carpentier, A. et al. Repeated blood–brain barrier opening with a nine-emitter implantable ultrasound device in combination with carboplatin in recurrent glioblastoma: a phase I/II clinical trial. Nat. Commun. 15, 1650 (2024).

    Article  ADS  Google Scholar 

  166. Bach, J. S. & Bruus, H. Suppression of acoustic streaming in shape-optimized channels. Phys. Rev. Lett. 124, 214501 (2020).

    Article  ADS  Google Scholar 

  167. Zhong, R. et al. Cellular immunity analysis by a modular acoustofluidic platform: CIAMAP. Sci. Adv. 9, eadj9964 (2023).

    Article  Google Scholar 

  168. Bar-Zion, A. et al. Acoustically triggered mechanotherapy using genetically encoded gas vesicles. Nat. Nanotechnol. 16, 1403–1412 (2021).

    Article  ADS  Google Scholar 

  169. Augustsson, P., Karlsen, J. T., Su, H.-W., Bruus, H. & Voldman, J. Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping. Nat. Commun. 7, 11556 (2016).

    Article  ADS  Google Scholar 

  170. Rezayati Charan, M. & Augustsson, P. Acoustophoretic characterization and separation of blood cells in acoustic impedance gradients. Phys. Rev. Appl. 20, 024066 (2023).

    Article  ADS  Google Scholar 

  171. Riaud, A., Baudoin, M., Bou Matar, O., Thomas, J.-L. & Brunet, P. On the influence of viscosity and caustics on acoustic streaming in sessile droplets: an experimental and a numerical study with a cost-effective method. J. Fluid Mech. 821, 384–420 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  172. Weser, R. & Schmidt, H. In situ surface acoustic wave field probing in microfluidic structures using optical transmission interferometry. J. Appl. Phys. 129, 244503 (2021).

    Article  ADS  Google Scholar 

  173. Sachs, S., Baloochi, M., Cierpka, C. & König, J. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves – part I. Lab Chip 22, 2011–2027 (2022).

    Article  Google Scholar 

  174. Hong, Z., Zhang, J. & Drinkwater, B. W. Observation of orbital angular momentum transfer from Bessel-shaped acoustic vortices to diphasic liquid-microparticle mixtures. Phys. Rev. Lett. 114, 214301 (2015).

    Article  ADS  Google Scholar 

  175. Riaud, A., Baudoin, M., Thomas, J.-L. & Bou Matar, O. Cyclones and attractive streaming generated by acoustical vortices. Phys. Rev. E 90, 013008 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Institutes of Health (R01GM141055 (T.J.H.), R01GM132603 (T.J.H.), R01HD103727 (T.J.H.), R01GM143439 (T.J.H.), R01GM135486 (T.J.H.), R44AG063643 (T.J.H.), R44OD024963 (T.J.H.), R44HL140800 (T.J.H.) and (R01GM145960 (L.P.L.)), and the National Science Foundation (CMMI-2104295 (T.J.H.)). The authors also acknowledge BioRender.com for the creation of images.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (J.R., S.Y., B.W.D., L.P.L. and T.J.H.); Experimentation (B.W.D., S.Y., J.R., L.P.L. and T.J.H.); Results (C.C., S.Y., J.R., B.W.D., L.P.L. and T.J.H.); Applications (S.Y., J.R., B.W.D., L.P.L. and T.J.H.); Reproducibility and data deposition (S.Y., J.R., B.W.D., L.P.L. and T.J.H.); Outlook (T.J.H., B.W.D. and L.P.L.); figure preparation (S.Y., C.C., B.W.D., L.P.L. and T.J.H.); manuscript revision (S.Y., J.R., Y.C., C.C., B.W.D., L.P.L. and T.J.H.); overview of the Primer (T.J.H.).

Corresponding authors

Correspondence to Shujie Yang, Chuyi Chen, Bruce W. Drinkwater, Luke P. Lee or Tony Jun Huang.

Ethics declarations

Competing interests

T.J.H. has co-founded a start-up company, Ascent Bio-Nano Technologies Inc., to commercialize technologies involving acoustofluidics and acoustic tweezers. The other authors declare no competing interests.

Citation diversity statement

The authors acknowledge that papers authored by scholars from historically excluded groups are systematically under-cited. Every attempt has been made to reference relevant papers in a manner that is equitable in terms of racial, ethnic, gender and geographical representation.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Daniel Ahmed, Hamdi Torun and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Acoustic cavitation

The formation, growth and collapse of microscopic gas bubbles in a liquid due to exposure to intense acoustic waves.

Acoustic holograms

Precisely engineered phases or amplitude patterns that shape acoustic wavefronts into desired three-dimensional fields.

Acoustic lenses

Devices designed to focus or shape acoustic waves by altering their propagation path through the principles of sound wave refraction.

Acoustic phased array

A system of multiple acoustic transducers that emit sound waves with precisely controlled relative phase shifts to dynamically shape and steer acoustic fields.

Acoustic vortices

Swirling sound waves that carry orbital angular momentum, possessing a helical phase front that can trap, rotate or manipulate objects in fluids or air.

Atomic force microscopy

(AFM). A high-resolution technique that uses a sharp nanometric probe to apply force on a system and monitors the resulting deflection of the probe by collecting light reflected from it to infer mechanical properties of the system in analysis, such as stiffness, adhesion and elasticity at the nanoscale.

Bisymmetric coherent acoustic tweezers

Acoustic tweezers that generate twofold symmetric patterns by applying excitations with fixed phase and amplitude differences.

Breathing mode

A vibrational mode in which a circular or cylindrical piezoelectric transducer undergoes uniform radial expansion and contraction in response to an applied alternating voltage.

Depth of focus

The distance between the points near and far from the focal point within which the acoustic intensity remains sufficiently concentrated.

Inverse filtering

A technique for synthesizing complex signals by using a set of independently controllable sources, and solving the inverse problem to determine the optimal input signals required to produce a desired wave field.

Micropipette aspiration

A technique that uses a fine, sharp pipette to apply suction to a single particle or cell, allowing precise manipulation and measurement of mechanical properties such as elasticity and deformability by analysing the particle’s response to the applied force.

Optical coherence tomography

A non-invasive imaging technique that captures high-resolution, cross-sectional images of biological tissues using a low-coherence light source such as a superluminescent diode or a femtosecond laser.

Optical tweezers

Precise laser-based tools that use focused light beams to generate controlled optical forces to trap and manipulate dielectric particles.

Pressure nodes

Points in a standing wave where the acoustic pressure remains constant (minimum variation), as opposed to antinodes, where it fluctuates maximally.

Standing waves

Waves that remain stationary in space, for example, due to the superposition of two counter-propagating waves of the same frequency and amplitude.

Stiffness

A measure of the strength of the forces holding a particle within an optical or acoustic trap, defined as the restoring force exerted per unit displacement from its equilibrium position.

Thickness mode

A vibrational mode of a plate or disc piezoelectric transducer consisting of expansions and contractions along the plate’s or disc’s thickness direction, and generating longitudinal acoustic waves when an alternating voltage is applied.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Rufo, J., Chen, Y. et al. Acoustic tweezers for advancing precision biology and medicine. Nat Rev Methods Primers 5, 49 (2025). https://doi.org/10.1038/s43586-025-00415-w

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s43586-025-00415-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载