Abstract
The electron transfer chain of chloroplast thylakoid membranes uses solar energy to split water into electrons and protons, creating energetic gradients that drive the formation of photosynthetic fuel in the form of NADPH and ATP. These metabolites are then used to power the fixation of carbon dioxide into biomass through the Calvin–Benson–Bassham cycle in the chloroplast stroma. Recent advances in molecular genetics, structural biology and spectroscopy have provided an unprecedented understanding of the molecular events involved in photosynthetic electron transfer from photon capture to ATP production. Specifically, we have gained insights into the assembly of the photosynthetic complexes into larger supercomplexes, thylakoid membrane organization and the mechanisms underpinning efficient light harvesting, photoprotection and oxygen evolution. In this Review, I focus on the angiosperm plant thylakoid system, outlining our current knowledge on the structure, function, regulation and assembly of each component of the photosynthetic chain. I explain how solar energy is harvested and converted into chemical energy by the photosynthetic electron transfer chain, how its components are integrated into a complex membrane macrostructure and how this organization contributes to regulation and photoprotection.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Change history
16 July 2025
A Correction to this paper has been published: https://doi.org/10.1038/s41580-025-00877-6
References
Hohmann-Marriott, M. F. & Blankenship, R. E. Evolution of photosynthesis. Annu. Rev. Plant. Biol. 62, 515–548 (2011).
Fischer, W. W., Hemp, J. & Johnson, J. E. Evolution of oxygenic photosynthesis. Annu. Rev. Earth Planet. Sci. 44, 647–683 (2016).
Nelson, N. & Junge, W. Structure and energy transfer in photosystems of oxygenic photosynthesis. Annu. Rev. Biochem. 84, 1–25 (2015).
Nelson, N. & Ben-Shem, A. The complex architecture of oxygenic photosynthesis. Nat. Rev. Mol. Cell Biol. 5, 971–982 (2004).
Zhu, X.-G., Long, S. P. & Ort, D. R. Improving photosynthetic efficiency for greater yield. Plant. Biol. 61, 235–261 (2010).
Barber, J. Biological solar energy. Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci. 365, 1007–1023 (2007).
Nocera, D. G. The artificial leaf. Acc. Chem. Res. 45, 767–776 (2012).
Scholes, G. D., Fleming, G. R., Olaya-Castro, A. & van Grondelle, R. Lessons from nature about solar light harvesting. Nat. Chem. 3, 763–774 (2011).
Lawrence, J. M. et al. Rewiring photosynthetic electron transport chains for solar energy conversion. Nat. Rev. Bioeng. 1, 887–905 (2023).
Singh, A. K., Kishore, G. M. & Pakrasi, H. B. Emerging platforms for co-utilization of one-carbon substrates by photosynthetic organisms. Curr. Opin. Biotechnol. 53, 201–208 (2018).
Whatley, F. R., Tagawa, K. & Arnon, D. I. Separation of the light and dark reactions in electron transfer during photosynthesis. Proc. Natl Acad. Sci. USA 49, 266–270 (1963).
Kühlbrandt, W. The resolution revolution. Science 343, 1443–1444 (2014).
Berera, R., Grondelle, Rvan & Kennis, J. T. M. Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems. Photosynth. Res. 101, 105–118 (2009).
Liu, H. et al. CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants. Mol. Plant. 10, 530–532 (2017).
Miki, D., Zhang, W., Zeng, W., Feng, Z. & Zhu, J.-K. CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation. Nat. Commun. 9, 1967 (2018).
Zhang, Z. et al. Insights into the molecular mechanisms of CRISPR/Cas9-mediated gene targeting at multiple loci in Arabidopsis. Plant. Physiol. 190, 2203–2216 (2022).
Ruf, S. et al. High-efficiency generation of fertile transplastomic Arabidopsis plants. Nat. Plants 5, 282–289 (2019).
Mazor, Y., Borovikova, A. & Nelson, N. The structure of plant photosystem I super-complex at 2.8 Å resolution. eLife 4, e07433 (2015).
Wei, X. et al. Structure of spinach photosystem II–LHCII supercomplex at 3.2 Å resolution. Nature 534, 69–74 (2016). This article reports the first high-resolution structure of the PSII–LHCII supercomplex from plants.
Mazor, Y., Borovikova, A., Caspy, I. & Nelson, N. Structure of the plant photosystem I supercomplex at 2.6 Å resolution. Nat. Plants 3, 17014 (2017).
Su, X. et al. Structure and assembly mechanism of plant C2S2M2-type PSII–LHCII supercomplex. Science 357, 815–820 (2017).
Pan, X. et al. Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II. Science 360, 1109–1113 (2018). Reports the first high-resolution structure of the state transition complex of PSI and LHCII.
Hahn, A., Vonck, J., Mills, D. J., Meier, T. & Kühlbrandt, W. Structure, mechanism, and regulation of the chloroplast ATP synthase. Science 360, eaat4318 (2018). This article reports the structure of the chloroplast ATP synthase enzyme and structural details behind its redox regulation.
Malone, L. A. et al. Cryo-EM structure of the spinach cytochrome b6f complex at 3.6 Å resolution. Nature 575, 535–539 (2019). Reports a high-resolution structure of the higher plant cytochrome b6f complex.
Su, X. et al. Supramolecular assembly of chloroplast NADH dehydrogenase-like complex with photosystem I from Arabidopsis thaliana. Mol. Plant. 15, 454–467 (2022).
Shen, L. et al. Architecture of the chloroplast PSI–NDH supercomplex in Hordeum vulgare. Nature 601, 649–654 (2022). This article reports a high-resolution structure of the plant PSI–NDH supercomplex.
Sarewicz, M. et al. High-resolution cryo-EM structures of plant cytochrome b6f at work. Sci. Adv. 9, eadd9688 (2023).
Hussein, R. et al. Cryo-electron microscopy reveals hydrogen positions and water networks in photosystem II. Science 384, 1349–1355 (2024). This article reports a 1.7 Å structure of the PS core, highlighting the water channels associated with water oxidation and plastoquinone reduction.
Wietrzynski, W. et al. Charting the native architecture of Chlamydomonas thylakoid membranes with single-molecule precision. eLife 9, e53740 (2020).
Wietrzynski, W. et al. Molecular architecture of thylakoid membranes within intact spinach chloroplasts. eLife https://doi.org/10.7554/eLife.105496 (2025). A cryo-ET study revealing the native membrane structure and distribution of photosynthetic complexes within a native spinach chloroplast.
Nelson, N. & Yocum, C. F. Structure and function of photosystems I and II. Annu. Rev. Plant. Biol. 57, 521–565 (2006).
Hill, R. & Bendall, F. Function of the two cytochrome components in chloroplasts: a working hypothesis. Nature 186, 136–137 (1960).
Duysens, L. N. M., Amesz, J. & Kamp, B. M. Two photochemical systems in photosynthesis. Nature 190, 510–511 (1961).
Mitchell, P. The protonmotive Q cycle: a general formulation. FEBS Lett. 59, 137–139 (1975).
Haehnel, W., Pröpper, A. & Krause, H. Evidence for complexed plastocyanin as the immediate electron donor of P-700. Biochim. Biophys. Acta Bioenerg. 593, 384–399 (1980).
Tagawa, K., Tsujimoto, H. Y. & Arnon, D. I. Role of chloroplast ferredoxin in the energy conversion process of photosynthesis. Proc. Natl Acad. Sci. USA 49, 567–572 (1963).
Malone, L. A., Proctor, M. S., Hitchcock, A., Hunter, C. N. & Johnson, M. P. Cytochrome b6f — orchestrator of photosynthetic electron transfer. Biochim. Biophys. Acta Bioenerg. 1862, 148380 (2021).
Sarewicz, M. et al. Catalytic reactions and energy conservation in the cytochrome bc1 and b6f complexes of energy-transducing membranes. Chem. Rev. 121, 2020–2108 (2021).
Mitchell, P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191, 144–148 (1961).
Jagendorf, A. T. Acid-base transitions and phosphorylation by chloroplasts. Fed. Proc. 26, 1361–1369 (1967).
Bassham, J. A. et al. The path of carbon in photosynthesis. XXI. The cyclic regeneration of carbon dioxide acceptor 1. J. Am. Chem. Soc. 76, 1760–11770 (1954).
Sharkey, T. D. Discovery of the canonical Calvin–Benson cycle. Photosynth. Res. 140, 235–252 (2019).
Raines, C. A. The Calvin cycle revisited. Photosynth. Res. 75, 1–10 (2003).
Noctor, G. & Foyer, C. H. A re-evaluation of the ATP:NADPH budget during C3 photosynthesis: a contribution from nitrate assimilation and its associated respiratory activity? J. Exp. Bot. 49, 1895–1908 (1998).
Kramer, D. M. & Evans, J. R. The importance of energy balance in improving photosynthetic productivity. Plant. Physiol. 155, 70–78 (2010).
Allen, J. F. Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain. Trends Plant. Sci. 8, 15–19 (2003).
Rutherford, A. W., Osyczka, A. & Rappaport, F. Back‐reactions, short‐circuits, leaks and other energy wasteful reactions in biological electron transfer: redox tuning to survive life in O2. FEBS Lett. 586, 603–616 (2012).
Dau, H. & Zaharieva, I. Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation. Acc. Chem. Res. 42, 1861–1870 (2009).
Shevela, D., Kern, J. F., Govindjee, G. & Messinger, J. Solar energy conversion by photosystem II: principles and structures. Photosynth. Res. 156, 279–307 (2023).
Paweł, R., Aleksandra, U. & Elżbieta, R. Enzymatic kinetics of photosystem II with DCBQ as a substrate in extended Michaelis–Menten model. J. Photochem. Photobiol. B: Biol. 247, 112780 (2023).
Croce, R. & Amerongen, Hvan Natural strategies for photosynthetic light harvesting. Nat. Chem. Biol. 10, 492–501 (2014).
Fiebig, O. C., Harris, D., Wang, D., Hoffmann, M. P. & Schlau-Cohen, G. S. Ultrafast dynamics of photosynthetic light harvesting: strategies for acclimation across organisms. Annu. Rev. Phys. Chem. 74, 493–520 (2023).
Björn, L. O., Papageorgiou, G. C., Blankenship, R. E., & Govindjee. A viewpoint: why chlorophyll a? Photosynth. Res. 99, 85–98 (2009).
Ruban, A. V. & Johnson, M. P. Xanthophylls as modulators of membrane protein function. Arch. Biochem. Biophys. 504, 78–85 (2010).
Ruban, A. In Carotenoids: Physical, Chemical, and Biological Functions and Properties (ed. Landrum, J. T) 113–136 (CRC Press, 2009).
Fiedor, L., Dudkowiak, A. & Pilch, M. The origin of the dark S1 state in carotenoids: a comprehensive model. J. R. Soc. Interface 16, 20190191 (2019).
Gillbro, T., Sundström, V., Sandström, Å., Spangfort, M. & Andersson, B. Energy transfer within the isolated light‐harvesting chlorophyll a/b protein of photosystem II (LHC‐II). FEBS Lett. 193, 267–270 (1985).
Chenu, A. & Scholes, G. D. Coherence in energy transfer and photosynthesis. Annu. Rev. Phys. Chem. 66, 69–96 (2015).
Liu, Z. et al. Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428, 287–292 (2004).
Standfuss, J., Scheltinga, A. C. T., van Lamborghini, M. & Kühlbrandt, W. Mechanisms of photoprotection and nonphotochemical quenching in pea light‐harvesting complex at 2.5 Å resolution. EMBO J. 24, 919–928 (2005).
Ferreira, K. N., Iverson, T. M., Maghlaoui, K., Barber, J. & Iwata, S. Architecture of the photosynthetic oxygen-evolving center. Science 303, 1831–1838 (2004).
Zouni, A. et al. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409, 739–743 (2001).
Umena, Y., Kawakami, K., Shen, J.-R. & Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473, 55–60 (2011).
Bezouwen, L. Svan et al. Subunit and chlorophyll organization of the plant photosystem II supercomplex. Nat. Plants 3, 17080 (2017).
Kouřil, R., Wientjes, E., Bultema, J. B., Croce, R. & Boekema, E. J. High-light vs. low-light: effect of light acclimation on photosystem II composition and organization in Arabidopsis thaliana. Biochim. Biophys. Acta Bioenerg. 1827, 411–419 (2013).
Shan, J., Niedzwiedzki, D. M., Tomar, R. S., Liu, Z. & Liu, H. Architecture and functional regulation of a plant PSII–LHCII megacomplex. Sci. Adv. 10, eadq9967 (2024).
Li, X. et al. Structure of the red-shifted Fittonia albivenis photosystem I. Nat. Commun. 15, 6325 (2024).
Benson, S. L. et al. An intact light harvesting complex I antenna system is required for complete state transitions in Arabidopsis. Nat. Plants 1, 15176 (2015).
Yadav, K. N. S. et al. Supercomplexes of plant photosystem I with cytochrome b6f, light-harvesting complex II and NDH. Biochim. Biophys. Acta Bioenerg. 1858, 12–20 (2017).
Crepin, A., Kučerová, Z., Kosta, A., Durand, E. & Caffarri, S. Isolation and characterization of a large photosystem I–light‐harvesting complex II supercomplex with an additional Lhca1–a4 dimer in Arabidopsis. Plant. J. 102, 398–409 (2020).
Shi, L.-X., Hall, M., Funk, C. & Schröder, W. P. Photosystem II, a growing complex: updates on newly discovered components and low molecular mass proteins. Biochim. Biophys. Acta Bioenerg. 1817, 13–25 (2012).
Fantuzzi, A. et al. Bicarbonate-controlled reduction of oxygen by the QA semiquinone in photosystem II in membranes. Proc. Natl Acad. Sci. USA 119, e2116063119 (2022).
Lubitz, W., Chrysina, M. & Cox, N. Water oxidation in photosystem II. Photosynth. Res. 142, 105–125 (2019).
Cardona, T., Sedoud, A., Cox, N. & Rutherford, A. W. Charge separation in photosystem II: a comparative and evolutionary overview. Biochim. Biophys. Acta Bioenerg. 1817, 26–43 (2012).
Allgöwer, F., Gamiz-Hernandez, A. P., Rutherford, A. W. & Kaila, V. R. I. Molecular principles of redox-coupled protonation dynamics in photosystem II. J. Am. Chem. Soc. 144, 7171–7180 (2022).
Tracewell, C. A., Vrettos, J. S., Bautista, J. A., Frank, H. A. & Brudvig, G. W. Carotenoid photooxidation in photosystem II. Arch. Biochem. Biophys. 385, 61–69 (2001).
Sacksteder, C. A., Kanazawa, A., Jacoby, M. E. & Kramer, D. M. The proton to electron stoichiometry of steady-state photosynthesis in living plants: a proton-pumping Q cycle is continuously engaged. Proc. Natl Acad. Sci. USA 97, 14283–14288 (2000).
Kurisu, G., Zhang, H., Smith, J. L. & Cramer, W. A. Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity. Science 302, 1009–11014 (2003).
Stroebel, D., Choquet, Y., Popot, J.-L. & Picot, D. An atypical haem in the cytochrome b6f complex. Nature 426, 413–418 (2003).
Proctor, M. S. et al. Cryo-EM structures of the Synechocystis sp. PCC 6803 cytochrome b6f complex with and without the regulatory PetP subunit. Biochem. J. 479, 1487–1503 (2022).
Crofts, A. R. & Meinhardt, S. W. A Q-cycle mechanism for the cyclic electron-transfer chain of Rhodopseudomonas sphaeroides. Biochem. Soc. Trans. 10, 201–203 (1982).
Hasan, S. S., Yamashita, E., Baniulis, D. & Cramer, W. A. Quinone-dependent proton transfer pathways in the photosynthetic cytochrome b6f complex. Proc. Natl Acad. Sci. USA 110, 4297–4302 (2013).
Pintscher, S. et al. Molecular basis of plastoquinone reduction in plant cytochrome b6f. Nat. Plants 10, 1814–1825 (2024). This article shows structural details of the movement of the ISP from cyt b6f involved in electron transfer in the high potential chain.
Tikhonov, A. N. The cytochrome b6f complex at the crossroad of photosynthetic electron transport pathways. Plant. Physiol. Biochem. 81, 163–183 (2014).
Hasan, S. S. & Cramer, W. A. On rate limitations of electron transfer in the photosynthetic cytochrome b6f complex. Phys. Chem. Chem. Phys. 14, 13853 (2012).
Hasan, S. S. & Cramer, W. A. Internal lipid architecture of the hetero-oligomeric cytochrome b6f complex. Structure 22, 1008–1015 (2014).
Sarewicz, M. et al. Metastable radical state, nonreactive with oxygen, is inherent to catalysis by respiratory and photosynthetic cytochromes bc1/b6f. Proc. Natl Acad. Sci. USA 114, 1323–1328 (2017).
Hasan, S. S., Yamashita, E. & Cramer, W. A. Transmembrane signaling and assembly of the cytochrome b6f-lipidic charge transfer complex. Biochim. Biophys. Acta Bioenerg. 1827, 1295–1308 (2013).
Jensen, P. E., Haldrup, A., Rosgaard, L. & Scheller, H. V. Molecular dissection of photosystem I in higher plants: topology, structure and function. Physiol. Plant. 119, 313–321 (2003).
Brettel, K. Electron transfer and arrangement of the redox cofactors in photosystem I. Biochim. Biophys. Acta Bioenerg. 1318, 322–373 (1997).
Brettel, K. & Leibl, W. Electron transfer in photosystem I. Biochim. Biophys. Acta Bioenerg. 1507, 100–114 (2001).
Srinivasan, N. & Golbeck, J. H. Protein–cofactor interactions in bioenergetic complexes: the role of the A1A and A1B phylloquinones in photosystem I. Biochim. Biophys. Acta Bioenerg. 1787, 1057–1088 (2009).
Carrillo, N. & Ceccarelli, E. A. Open questions in ferredoxin‐NADP+ reductase catalytic mechanism. Eur. J. Biochem. 270, 1900–1915 (2003).
Goss, T. & Hanke, G. The end of the line: can ferredoxin and ferredoxin NADP(H) oxidoreductase determine the fate of photosynthetic electrons? Curr. Protein Pept. Sci. 15, 385–393 (2014).
Geigenberger, P., Thormählen, I., Daloso, D. M. & Fernie, A. R. The unprecedented versatility of the plant thioredoxin system. Trends Plant. Sci. 22, 249–262 (2017).
Thormählen, I. et al. Thioredoxins play a crucial role in dynamic acclimation of photosynthesis in fluctuating light. Mol. Plant. 10, 168–182 (2017).
Zimmer, D. et al. Topology of the redox network during induction of photosynthesis as revealed by time-resolved proteomics in tobacco. Sci. Adv. 7, eabi8307 (2021).
Buchanan, B. B. The path to thioredoxin and redox regulation in chloroplasts. Annu. Rev. Plant. Biol. 67, 1–24 (2016).
Gurrieri, L., Fermani, S., Zaffagnini, M., Sparla, F. & Trost, P. Calvin–Benson cycle regulation is getting complex. Trends Plant. Sci. 26, 898–912 (2021).
Yamori, W. & Shikanai, T. Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annu. Rev. Plant. Biol. 67, 1–26 (2015).
Kühlbrandt, W. Structure and mechanisms of F-type ATP synthases. Annu. Rev. Biochem. 88, 1–35 (2019).
Yang, J.-H., Williams, D., Kandiah, E., Fromme, P. & Chiu, P.-L. Structural basis of redox modulation on chloroplast ATP synthase. Commun. Biol. 3, 482 (2020).
Rühle, T. & Leister, D. Assembly of F1F0-ATP synthases. Biochim. Biophys. Acta Bioenerg. 1847, 849–860 (2015).
Junge, W. & Nelson, N. ATP synthase. Annu. Rev. Biochem. 84, 631–657 (2015).
Daum, B., Nicastro, D., Austin, J., McIntosh, J. R. & Kühlbrandt, W. Arrangement of photosystem II and ATP synthase in chloroplast membranes of spinach and pea. Plant. Cell 22, 1299–1312 (2010).
Boyer, P. D. The ATP synthase — a splendid molecular machine. Annu. Rev. Biochem. 66, 717–749 (1997).
Sekiguchi, T. et al. Chloroplast ATP synthase is reduced by both f-type and m-type thioredoxins. Biochim. Biophys. Acta Bioenerg. 1861, 148261 (2020).
Kanazawa, A. & Kramer, D. M. In vivo modulation of nonphotochemical exciton quenching (NPQ) by regulation of the chloroplast ATP synthase. Proc. Natl Acad. Sci. USA 99, 12789–12794 (2002).
Boudière, L. et al. Glycerolipids in photosynthesis: composition, synthesis and trafficking. Biochim. Biophys. Acta Bioenerg. 1837, 470–480 (2014).
Jarvis, P. et al. Galactolipid deficiency and abnormal chloroplast development in the Arabidopsis MGD synthase 1 mutant. Proc. Natl Acad. Sci. USA 97, 8175–8179 (2000).
Boardman, N. K. & Anderson, J. M. Isolation from spinach chloroplasts of particles containing different proportions of chlorophyll a and chlorophyll b and their possible role in the light reactions of photosynthesis. Nature 203, 166–167 (1964).
Anderson, J. M. & Andersson, B. The architecture of photosynthetic membranes: lateral and transverse organization. Trends Biochem. Sci. 7, 288–292 (1982).
Staehelin, L. A. Reversible particle movements associated with unstacking and restacking of chloroplast membranes in vitro. J. Cell Biol. 71, 136–158 (1976).
Dekker, J. P. & Boekema, E. J. Supramolecular organization of thylakoid membrane proteins in green plants. Biochim. Biophys. Acta Bioenerg. 1706, 12–39 (2005).
van Roon, H., van Breemen, J. F. L., de Weerd, F. L., Dekker, J. P. & Boekema, E. J. Solubilization of green plant thylakoid membranes with n-dodecyl-α,D-maltoside. Implications for the structural organization of the photosystem II, photosystem I, ATP synthase and cytochrome b6f complexes. Photosynth. Res. 64, 155–166 (2000).
Wood, W. H. J. et al. Dynamic thylakoid stacking regulates the balance between linear and cyclic photosynthetic electron transfer. Nat. Plants 4, 116–127 (2018).
Phuthong, W. et al. The use of contact mode atomic force microscopy in aqueous medium for structural analysis of spinach photosynthetic complexes. Plant. Physiol. 169, 1318–1332 (2015).
Sznee, K. et al. Jumping mode atomic force microscopy on grana membranes from spinach. J. Biol. Chem. 286, 39164–39171 (2011).
Johnson, M. P., Vasilev, C., Olsen, J. D. & Hunter, C. N. Nanodomains of cytochrome b6f and photosystem II complexes in spinach grana thylakoid membranes. Plant. Cell 26, 3051–3061 (2014).
Austin, J. R. & Staehelin, L. A. Three-dimensional architecture of grana and stroma thylakoids of higher plants as determined by electron tomography. Plant. Physiol. 155, 1601–1611 (2011).
Bussi, Y. et al. Fundamental helical geometry consolidates the plant photosynthetic membrane. Proc. Natl Acad. Sci. USA 116, 22366–22375 (2019).
Kiss, A. Z., Ruban, A. V. & Horton, P. The PsbS protein controls the organization of the photosystem II antenna in higher plant thylakoid membranes. J. Biol. Chem. 283, 3972–3978 (2008).
Garty, Y. et al. Thylakoid membrane stacking controls electron transport mode during the dark-to-light transition by adjusting the distances between PSI and PSII. Nat. Plants 10, 512–524 (2024).
Puthiyaveetil, S., Oort, Bvan & Kirchhoff, H. Surface charge dynamics in photosynthetic membranes and the structural consequences. Nat. Plants 3, 17020 (2017).
Armbruster, U. et al. Arabidopsis CURVATURE THYLAKOID1 proteins modify thylakoid architecture by inducing membrane curvature. Plant. Cell 25, 2661–2678 (2013).
Pribil, M. et al. Fine-tuning of photosynthesis requires CURVATURE THYLAKOID1-mediated thylakoid plasticity. Plant. Physiol. 176, 2351–2364 (2018).
Wood, W. H. J., Barnett, S. F. H., Flannery, S., Hunter, C. N. & Johnson, M. P. Dynamic thylakoid stacking is regulated by LHCII phosphorylation but not its interaction with PSI. Plant. Physiol. 180, 2152–2166 (2019).
Johnson, M. P. & Wientjes, E. The relevance of dynamic thylakoid organisation to photosynthetic regulation. Biochim. Biophys. Acta Bioenerg. 1861, 148039 (2020).
Höhner, R. et al. Plastocyanin is the long-range electron carrier between photosystem II and photosystem I in plants. Proc. Natl Acad. Sci. USA 117, 15354–15362 (2020).
Kirchhoff, H. et al. Dynamic control of protein diffusion within the granal thylakoid lumen. Proc. Natl Acad. Sci. USA 108, 20248–20253 (2011).
Hepworth, C. et al. Dynamic thylakoid stacking and state transitions work synergistically to avoid acceptor-side limitation of photosystem I. Nat. Plants 7, 87–98 (2021).
Foyer, C. H. & Hanke, G. ROS production and signalling in chloroplasts: cornerstones and evolving concepts. Plant. J. 111, 642–661 (2022).
Kyle, D. J., Staehelin, L. A. & Arntzen, C. J. Lateral mobility of the light-harvesting complex in chloroplast membranes controls excitation energy distribution in higher plants. Arch. Biochem. Biophys. 222, 527–541 (1983).
Johnson, M. P. et al. Photoprotective energy dissipation involves the reorganization of photosystem II light-harvesting complexes in the grana membranes of spinach chloroplasts. Plant. Cell 23, 1468–1479 (2011).
Herbstová, M., Tietz, S., Kinzel, C., Turkina, M. V. & Kirchhoff, H. Architectural switch in plant photosynthetic membranes induced by light stress. Proc. Natl Acad. Sci. USA 109, 20130–20135 (2012).
Ruban, A. V. & Johnson, M. P. Dynamics of higher plant photosystem cross-section associated with state transitions. Photosynth. Res. 99, 173–183 (2009).
Spitschan, M., Aguirre, G. K., Brainard, D. H. & Sweeney, A. M. Variation of outdoor illumination as a function of solar elevation and light pollution. Sci. Rep. 6, 26756 (2016).
Goldschmidt-Clermont, M. & Bassi, R. Sharing light between two photosystems: mechanism of state transitions. Curr. Opin. Plant. Biol. 25, 71–78 (2015).
Wientjes, E., Amerongen, Hvan & Croce, R. LHCII is an antenna of both photosystems after long-term acclimation. Biochim. Biophys. Acta Bioenerg. 1827, 420–426 (2013).
Horton, P. & Black, M. T. Activation of adenosine 5′ triphosphate‐induced quenching of chlorophyll fluorescence by reduced plastoquinone. FEBS Lett. 119, 141–144 (1980).
Vener, A. V., Kan, P. J. M., van, Rich, P. R., Ohad, I. & Andersson, B. Plastoquinol at the quinol oxidation site of reduced cytochrome bf mediates signal transduction between light and protein phosphorylation: thylakoid protein kinase deactivation by a single-turnover flash. Proc. Natl Acad. Sci. USA 94, 1585–1590 (1997).
Bellafiore, S., Barneche, F., Peltier, G. & Rochaix, J.-D. State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433, 892–895 (2005).
Shapiguzov, A. et al. Activation of the Stt7/STN7 kinase through dynamic interactions with the cytochrome b6f complex. Plant. Physiol. 171, 82–92 (2015).
Allen, J. F., Bennett, J., Steinback, K. E. & Arntzen, C. J. Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems. Nature 291, 25–29 (1981).
Su, X. et al. Antenna arrangement and energy transfer pathways of a green algal photosystem-I–LHCI supercomplex. Nat. Plants 5, 273–281 (2019).
Pan, X. et al. Structural basis of LhcbM5-mediated state transitions in green algae. Nat. Plants 7, 1119–1131 (2021).
Pribil, M., Pesaresi, P., Hertle, A., Barbato, R. & Leister, D. Role of plastid protein phosphatase TAP38 in LHCII dephosphorylation and thylakoid electron flow. PLoS Biol. 8, e1000288 (2010).
Shapiguzov, A. et al. The PPH1 phosphatase is specifically involved in LHCII dephosphorylation and state transitions in Arabidopsis. Proc. Natl Acad. Sci. USA 107, 4782–4787 (2010).
Pfannschmidt, T., Nilsson, A. & Allen, J. F. Photosynthetic control of chloroplast gene expression. Nature 397, 625–628 (1999).
Pfannschmidt, T., Schütze, K., Brost, M. & Oelmüller, R. A novel mechanism of nuclear photosynthesis gene regulation by redox signals from the chloroplast during photosystem stoichiometry adjustment. J. Biol. Chem. 276, 36125–36130 (2001).
Rintamäki, E., Martinsuo, P., Pursiheimo, S. & Aro, E.-M. Cooperative regulation of light-harvesting complex II phosphorylation via the plastoquinol and ferredoxin-thioredoxin system in chloroplasts. Proc. Natl Acad. Sci. USA 97, 11644–11649 (2000).
Fernyhough, P., Foyer, C. H. & Horton, P. Increase in the level of thylakoid protein phosphorylation in maize mesophyll chloroplasts by decrease in the transthylakoid pH gradient. FEBS Lett. 176, 133–138 (1984).
Murchie, E. H. & Ruban, A. V. Dynamic non‐photochemical quenching in plants: from molecular mechanism to productivity. Plant. J. 101, 885–896 (2020).
Li, Z., Wakao, S., Fischer, B. B. & Niyogi, K. K. Sensing and responding to excess light. Annu. Rev. Plant. Biol. 60, 239–260 (2009).
Gall, A. et al. Molecular adaptation of photoprotection: triplet states in light-harvesting proteins. Biophys. J. 101, 934–942 (2011).
Ruban, A. V. & Wilson, S. The mechanism of non-photochemical quenching in plants: localization and driving forces. Plant. Cell Physiol. 62, 1063–1072 (2020).
Demmig-Adams, B. Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim. Biophys. Acta Bioenerg. 1020, 1–24 (1990).
Bratt, C. E., Arvidsson, P.-O., Carlsson, M. & Åkerlund, H.-E. Regulation of violaxanthin de-epoxidase activity by pH and ascorbate concentration. Photosynth. Res. 45, 169–175 (1995).
Li, X.-P. et al. Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J. Biol. Chem. 279, 22866–22874 (2004).
Krishnan-Schmieden, M., Konold, P. E., Kennis, J. T. M. & Pandit, A. The molecular pH-response mechanism of the plant light-stress sensor PsbS. Nat. Commun. 12, 2291 (2021).
Sacharz, J., Giovagnetti, V., Ungerer, P., Mastroianni, G. & Ruban, A. V. The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex II to control non-photochemical quenching. Nat. Plants 3, 16225 (2017).
Correa-Galvis, V., Poschmann, G., Melzer, M., Stühler, K. & Jahns, P. PsbS interactions involved in the activation of energy dissipation in Arabidopsis. Nat. Plants 2, 15225 (2016).
Wilson, S. et al. Hydrophobic mismatch in the thylakoid membrane regulates photosynthetic light harvesting. J. Am. Chem. Soc. 146, 14905–14914 (2024). This article sheds a new light on the function of the vital but enigmatic PsbS protein in photoprotection, providing evidence for its role in triggering conformational changes in LHCII through hydrophobic mismatch.
Chen, L., Rodriguez-Heredia, M., Hanke, G. T. & Ruban, A. V. Distinct features of PsbS essential for mediating plant photoprotection. Plant Commun. 6, 101179 (2024).
Ruan, M. et al. Cryo-EM structures of LHCII in photo-active and photo-protecting states reveal allosteric regulation of light harvesting and excess energy dissipation. Nat. Plants 9, 1547–1557 (2023). Structure-based explanation of the conformational photoprotective switch in LHCII trimers underlying non-photochemical quenching.
Ruban, A. V. et al. Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450, 575–578 (2007).
Ma, Y.-Z., Holt, N. E., Li, X.-P., Niyogi, K. K. & Fleming, G. R. Evidence for direct carotenoid involvement in the regulation of photosynthetic light harvesting. Proc. Natl Acad. Sci. USA 100, 4377–4382 (2003).
Holt, N. E. et al. Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307, 433–436 (2005).
Liao, P.-N., Bode, S., Wilk, L., Hafi, N. & Walla, P. J. Correlation of electronic carotenoid–chlorophyll interactions and fluorescence quenching with the aggregation of native LHCII and chlorophyll deficient mutants. Chem. Phys. 373, 50–55 (2010).
Bode, S. et al. On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls. Proc. Natl Acad. Sci. USA 106, 12311–12316 (2009).
Oort, Bvan et al. Revisiting the role of xanthophylls in nonphotochemical quenching. J. Phys. Chem. Lett. 9, 346–352 (2018).
Son, M., Moya, R., Pinnola, A., Bassi, R. & Schlau-Cohen, G. S. Protein–protein interactions induce pH-dependent and zeaxanthin-independent photoprotection in the plant light-harvesting complex, LHCII. J. Am. Chem. Soc. 143, 17577–17586 (2021).
Ruban, A. V. & Murchie, E. H. Assessing the photoprotective effectiveness of non-photochemical chlorophyll fluorescence quenching: a new approach. Biochim. Biophys. Acta Bioenerg. 1817, 977–982 (2012).
Theis, J. & Schroda, M. Revisiting the photosystem II repair cycle. Plant. Signal. Behav. 11, e1218587 (2016).
Aro, E.-M., Virgin, I. & Andersson, B. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim. Biophys. Acta Bioenerg. 1143, 113–134 (1993).
Komenda, J., Sobotka, R. & Nixon, P. J. The biogenesis and maintenance of photosystem II: recent advances and current challenges. Plant Cell 36, 3997–4013 (2024).
Küster, L., Lücke, R., Brabender, C., Bethmann, S. & Jahns, P. The amount of zeaxanthin epoxidase but not the amount of violaxanthin de-epoxidase is a critical determinant of zeaxanthin accumulation in arabidopsis thaliana and nicotiana tabacum. Plant. Cell Physiol. 64, 1220–1230 (2023).
Kromdijk, J. et al. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354, 857–861 (2016).
Külheim, C., Ågren, J. & Jansson, S. Rapid regulation of light harvesting and plant fitness in the field. Science 297, 91–93 (2002).
Degen, G. E. & Johnson, M. P. Photosynthetic control at the cytochrome b6f complex. Plant Cell 36, 4065–4079 (2024).
Furutani, R., Wada, S., Ifuku, K., Maekawa, S. & Miyake, C. Higher reduced state of Fe/S-signals, with the suppressed oxidation of P700, causes PSI inactivation in Arabidopsis thaliana. Antioxidants 12, 21 (2022).
Tiwari, A. et al. Photodamage of iron–sulphur clusters in photosystem I induces non-photochemical energy dissipation. Nat. Plants 2, 16035 (2016).
Takagi, D., Takumi, S., Hashiguchi, M., Sejima, T. & Miyake, C. Superoxide and singlet oxygen produced within the thylakoid membranes both cause photosystem I photoinhibition. Plant. Physiol. 171, 1626–1634 (2016).
Sejima, T., Takagi, D., Fukayama, H., Makino, A. & Miyake, C. Repetitive short-pulse light mainly inactivates photosystem I in sunflower leaves. Plant. Cell Physiol. 55, 1184–1193 (2014).
Suorsa, M. et al. PROTON GRADIENT REGULATION5 is essential for proper acclimation of Arabidopsis photosystem I to naturally and artificially fluctuating light conditions. Plant. Cell 24, 2934–2948 (2012).
Lima‐Melo, Y., Gollan, P. J., Tikkanen, M., Silveira, J. A. G. & Aro, E. Consequences of photosystem‐I damage and repair on photosynthesis and carbon use in Arabidopsis thaliana. Plant. J. 97, 1061–1072 (2019).
Lempiäinen, T., Rintamäki, E., Aro, E. & Tikkanen, M. Plants acclimate to photosystem I photoinhibition by readjusting the photosynthetic machinery. Plant, Cell Env. 45, 2954–2971 (2022).
Rumberg, B. & Siggel, U. pH changes in the inner phase of the thylakoids during photosynthesis. Naturwissenschaften 56, 130–132 (1969).
Yamamoto, H. & Shikanai, T. PGR5-dependent cyclic electron flow protects photosystem I under fluctuating light at donor and acceptor sides. Plant. Physiol. 179, 588–600 (2018).
Takizawa, K., Cruz, J. A., Kanazawa, A. & Kramer, D. M. The thylakoid proton motive force in vivo. Quantitative, non-invasive probes, energetics, and regulatory consequences of light-induced pmf. Biochim. Biophys. Acta Bioenerg. 1767, 1233–1244 (2007).
Schöttler, M. A., Tóth, S. Z., Boulouis, A. & Kahlau, S. Photosynthetic complex stoichiometry dynamics in higher plants: biogenesis, function, and turnover of ATP synthase and the cytochrome b6f complex. J. Exp. Bot. 66, 2373–2400 (2015).
Hald, S., Nandha, B., Gallois, P. & Johnson, G. N. Feedback regulation of photosynthetic electron transport by NADP(H) redox poise. Biochim. Biophys. Acta Bioenerg. 1777, 433–440 (2008).
Degen, G. E. et al. High cyclic electron transfer via the PGR5 pathway in the absence of photosynthetic control. Plant. Physiol. 192, 370–386 (2023).
Shimakawa, G., Shaku, K. & Miyake, C. Reduction-induced suppression of electron flow (RISE) is relieved by non-ATP-consuming electron flow in Synechococcus elongatus PCC 7942. Front. Microbiol. 9, 886 (2018).
Anderson, J. M. Photoregulation of the composition, function, and structure of thylakoid membranes. Annu. Rev. Plant. Physiol. 37, 93–136 (1986).
Schöttler, M. A. & Tóth, S. Z. Photosynthetic complex stoichiometry dynamics in higher plants: environmental acclimation and photosynthetic flux control. Front. Plant. Sci. 5, 188 (2014).
Albanese, P. et al. Thylakoid proteome modulation in pea plants grown at different irradiances: quantitative proteomic profiling in a non‐model organism aided by transcriptomic data integration. Plant. J. 96, 786–800 (2018).
Flannery, S. E. et al. Comparative proteomics of thylakoids from Arabidopsis grown in laboratory and field conditions. Plant. Direct 5, e355 (2021).
Flannery, S. E. et al. Developmental acclimation of the thylakoid proteome to light intensity in Arabidopsis. Plant. J. 105, 223–244 (2021).
Allen, J. F., de Paula, W. B. M., Puthiyaveetil, S. & Nield, J. A structural phylogenetic map for chloroplast photosynthesis. Trends Plant. Sci. 16, 645–655 (2011).
Nickelsen, J. & Rengstl, B. Photosystem II assembly: from cyanobacteria to plants. Annu. Rev. Plant. Biol. 64, 609–635 (2013).
Komenda, J., Sobotka, R. & Nixon, P. J. Assembling and maintaining the photosystem II complex in chloroplasts and cyanobacteria. Curr. Opin. Plant. Biol. 15, 245–251 (2012).
Heinz, S., Liauw, P., Nickelsen, J. & Nowaczyk, M. Analysis of photosystem II biogenesis in cyanobacteria. Biochim. Biophys. Acta Bioenerg. 1857, 274–287 (2016).
Hristou, A. et al. Ribosome-associated chloroplast SRP54 enables efficient cotranslational membrane insertion of key photosynthetic proteins. Plant. Cell 31, 2734–2750 (2019).
Hennon, S. W., Soman, R., Zhu, L. & Dalbey, R. E. YidC/Alb3/Oxa1 family of insertases. J. Biol. Chem. 290, 14866–14874 (2015).
Anbudurai, P. R., Mor, T. S., Ohad, I., Shestakov, S. V. & Pakrasi, H. B. The ctpA gene encodes the C-terminal processing protease for the D1 protein of the photosystem II reaction center complex. Proc. Natl Acad. Sci. USA 91, 8082–8086 (1994).
Knoppová, J. et al. Assembly of D1/D2 complexes of photosystem II: Binding of pigments and a network of auxiliary proteins. Plant. Physiol. 189, 790–804 (2022).
Chiu, Y.-F. & Chu, H.-A. New structural and mechanistic insights into functional roles of cytochrome b559 in photosystem II. Front. Plant. Sci. 13, 914922 (2022).
Walters, R. G., Shephard, F., Rogers, J. J. M., Rolfe, S. A. & Horton, P. Identification of mutants of Arabidopsis defective in acclimation of photosynthesis to the light environment. Plant. Physiol. 131, 472–481 (2003).
Che, Y. et al. Arabidopsis PsbP-like protein 1 facilitates the assembly of the photosystem II supercomplexes and optimizes plant fitness under fluctuating light. Plant. Cell Physiol. 61, 1168–1180 (2020).
Zhao, Z. et al. The Ycf48 accessory factor occupies the site of the oxygen-evolving manganese cluster during photosystem II biogenesis. Nat. Commun. 14, 4681 (2023). Structure of a PSII intermediate including the YCF48 assembly factor, suggesting it may prevent premature binding of Mn and Ca ions, thus protecting the complex from damage.
Beck, J. et al. Small one-helix proteins are essential for photosynthesis in Arabidopsis. Front. Plant. Sci. 8, 7 (2017).
Maeda, H. et al. Characterization of photosystem II assembly complexes containing ONE-HELIX PROTEIN1 in Arabidopsis thaliana. J. Plant. Res. 135, 361–376 (2022).
Wang, F. et al. One-helix protein 2 is not required for the synthesis of photosystem II subunit D1 in Chlamydomonas. Plant. Physiol. 191, 1612–1633 (2023).
Myouga, F. et al. Stable accumulation of photosystem II requires ONE-HELIX PROTEIN1 (OHP1) of the light harvesting-like family. Plant. Physiol. 176, 2277–2291 (2018).
Hey, D. & Grimm, B. ONE-HELIX PROTEIN2 (OHP2) is required for the stability of OHP1 and assembly factor HCF244 and is functionally linked to PSII biogenesis. Plant. Physiol. 177, 1453–1472 (2018).
Boehm, M. et al. Investigating the early stages of photosystem II assembly in Synechocystis sp. PCC 6803. J. Biol. Chem. 286, 14812–14819 (2011).
Armbruster, U. et al. The Arabidopsis thylakoid protein PAM68 is required for efficient D1 biogenesis and photosystem II assembly. Plant. Cell 22, 3439–3460 (2010).
Kashino, Y. et al. Proteomic analysis of a highly active photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypeptides. Biochemistry 41, 8004–8012 (2002).
Xiao, Y. et al. Structural insights into cyanobacterial photosystem II intermediates associated with Psb28 and Tsl0063. Nat. Plants 7, 1132–1142 (2021).
Keller, J.-M. et al. Eukaryote-specific assembly factor DEAP2 mediates an early step of photosystem II assembly in Arabidopsis. Plant. Physiol. 193, 1970–1986 (2023).
Xingxing, C. et al. Crystal structure of Psb27 from Arabidopsis thaliana determined at a resolution of 1.85 Å. Photosynth. Res. 136, 139–146 (2018).
Zabret, J. et al. Structural insights into photosystem II assembly. Nat. Plants 7, 524–538 (2021). A high-resolution structure of a PSII assembly intermediate, with photoprotective roles identified for key assembly factors.
Huang, G. et al. Structural insights into a dimeric Psb27-photosystem II complex from a cyanobacterium Thermosynechococcus vulcanus. Proc. Natl Acad. Sci. USA 118, e2018053118 (2021).
Johnson, V. M., Biswas, S., Roose, J. L., Pakrasi, H. B. & Liu, H. Psb27, a photosystem II assembly protein, enables quenching of excess light energy during its participation in the PSII lifecycle. Photosynth. Res. 152, 297–304 (2022).
Zhao, Y., Deng, L., Last, R. L., Hua, W. & Liu, J. Psb28 protein is indispensable for stable accumulation of PSII core complexes in Arabidopsis. Plant. J. 119, 1226–1238 (2024).
Kley, J. et al. Structural adaptation of the plant protease Deg1 to repair photosystem II during light exposure. Nat. Struct. Mol. Biol. 18, 728–731 (2011).
Karamoko, M., Cline, S., Redding, K., Ruiz, N. & Hamel, P. P. Lumen Thiol Oxidoreductase1, a disulfide bond-forming catalyst, is required for the assembly of photosystem II in Arabidopsis. Plant. Cell 23, 4462–4475 (2011).
Lima, A. et al. A redox-active FKBP-type immunophilin functions in accumulation of the photosystem II supercomplex in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 103, 12631–12636 (2006).
Fu, A. et al. A chloroplast cyclophilin functions in the assembly and maintenance of photosystem II in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 104, 15947–15952 (2007).
Gould, S. B., Waller, R. F. & McFadden, G. I. Plastid evolution. Annu. Rev. Plant. Biol. 59, 491–517 (2008).
Moore, M., Harrison, M. S., Peterson, E. C. & Henry, R. Chloroplast Oxa1p homolog albino3 is required for post-translational integration of the light harvesting chlorophyll-binding protein into thylakoid membranes. J. Biol. Chem. 275, 1529–1532 (2000).
Sun, X. et al. The thylakoid protease Deg1 is involved in photosystem‐II assembly in Arabidopsis thaliana. Plant. J. 62, 240–249 (2010).
Li, L. et al. Protein degradation rate in Arabidopsis thaliana leaf growth and development. Plant. Cell 29, 207–228 (2017).
Kato, Y. et al. Characterization of tryptophan oxidation affecting D1 degradation by FtsH in the photosystem II quality control of chloroplasts. eLife 12, RP88822 (2023).
Tikkanen, M., Nurmi, M., Kangasjärvi, S. & Aro, E.-M. Core protein phosphorylation facilitates the repair of photodamaged photosystem II at high light. Biochim. Biophys. Acta Bioenerg. 1777, 1432–1437 (2008).
Goral, T. K. et al. Visualizing the mobility and distribution of chlorophyll proteins in higher plant thylakoid membranes: effects of photoinhibition and protein phosphorylation. Plant. J. 62, 948–959 (2010).
Puthiyaveetil, S. et al. Significance of the photosystem II core phosphatase PBCP for plant viability and protein repair in thylakoid membranes. Plant. Cell Physiol. 55, 1245–1254 (2014).
Huang, W. et al. Arabidopsis thylakoid formation 1 is a critical regulator for dynamics of PSII–LHCII complexes in leaf senescence and excess light. Mol. Plant. 6, 1673–1691 (2013).
Li, A. et al. Structural basis for an early stage of the photosystem II repair cycle in Chlamydomonas reinhardtii. Nat. Commun. 15, 5211 (2024). A high-resolution structure of a PSII repair complex detailing the roles of the proteins in the disassembly of the oxygen evolving complex and peripheral antenna.
Samol, I. et al. Identification of a photosystem II phosphatase involved in light acclimation in Arabidopsis. Plant. Cell 24, 2596–2609 (2012).
Jin, H. et al. Hypersensitive to high light1 interacts with low quantum yield of photosystem II1 and functions in protection of photosystem II from photodamage in arabidopsis. Plant. Cell 26, 1213–1229 (2014).
Malnoë, A., Wang, F., Girard-Bascou, J., Wollman, F.-A. & Vitry, C. de. Thylakoid FtsH protease contributes to photosystem II and cytochrome b6f remodeling in Chlamydomonas reinhardtii under stress conditions. Plant. Cell 26, 373–390 (2014).
Sun, X. et al. Formation of DEG5 and DEG8 complexes and their involvement in the degradation of photodamaged photosystem II reaction center D1 protein in arabidopsis. Plant. Cell 19, 1347–1361 (2007).
Fu, W. et al. Immunophilin CYN28 is required for accumulation of photosystem II and thylakoid FtsH protease in Chlamydomonas. Plant. Physiol. 191, 1002–1016 (2022).
Bec̆ková, M. et al. Structure of Psb29/Thf1 and its association with the FtsH protease complex involved in photosystem II repair in cyanobacteria. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160394 (2017).
Sakamoto, W. Protein degradation machineries in plastids. Annu. Rev. Plant. Biol. 57, 599–621 (2006).
Walter, B., Hristou, A., Nowaczyk, M. M. & Schünemann, D. In vitro reconstitution of co-translational D1 insertion reveals a role of the cpSec–Alb3 translocase and Vipp1 in photosystem II biogenesis. Biochem. J. 468, 315–324 (2015).
Fristedt, R., Williams-Carrier, R., Merchant, S. S. & Barkan, A. A thylakoid membrane protein harboring a DnaJ-type zinc finger domain is required for photosystem I accumulation in plants. J. Biol. Chem. 289, 30657–30667 (2014).
Króliczewski, J., Piskozub, M., Bartoszewski, R. & Króliczewska, B. ALB3 insertase mediates cytochrome b6 co-translational import into the thylakoid membrane. Sci. Rep. 6, 34557 (2016).
Króliczewski, J., Bartoszewski, R. & Króliczewska, B. Chloroplast PetD protein: evidence for SRP/Alb3-dependent insertion into the thylakoid membrane. BMC Plant. Biol. 17, 213 (2017).
Xiao, J. et al. DAC is involved in the accumulation of the cytochrome b6/f complex in arabidopsis. Plant. Physiol. 160, 1911–1922 (2012).
Heinnickel, M. L. et al. Novel thylakoid membrane greencut protein CPLD38 impacts accumulation of the cytochrome b6f complex and associated regulatory processes.J. Biol. Chem. 288, 7024–7036 (2013).
Wittkopp, T. M. et al. GreenCut protein CPLD49 of Chlamydomonas reinhardtii associates with thylakoid membranes and is required for cytochrome b6f complex accumulation. Plant. J. 94, 1023–1037 (2018).
Saint-Marcoux, D., Wollman, F.-A. & de Vitry, C. Biogenesis of cytochrome b6 in photosynthetic membranes. J. Cell Biol. 185, 1195–1207 (2009).
Voelker, R. & Barkan, A. Two nuclear mutations disrupt distinct pathways for targeting proteins to the chloroplast thylakoid. EMBO J. 14, 3905–3914 (1995).
Röhl, T. & van Wijk, K. J. In vitro reconstitution of insertion and processing of cytochrome f in a homologous chloroplast translation system. J. Biol. Chem. 276, 35465–35472 (2001).
Lennartz, K. HCF164 encodes a thioredoxin-like protein involved in the biogenesis of the cytochrome b6f complex in Arabidopsis. Plant. Cell Online 13, 2539–2551 (2001).
Karamoko, M., Gabilly, S. T. & Hamel, P. P. Operation of trans-thylakoid thiol-metabolizing pathways in photosynthesis. Front. Plant. Sci. 4, 476 (2013).
Xie, Z. & Merchant, S. The plastid-encoded ccsA gene is required for heme attachment to chloroplast c-type cytochromes. J. Biol. Chem. 271, 4632–4639 (1996).
Inoue, K. et al. Ccs1, a nuclear gene required for the post-translational assembly of chloroplast c-type cytochromes. J. Biol. Chem. 272, 31747–31754 (1997).
Dreyfuss, B. W., Hamel, P. P., Nakamoto, S. S. & Merchant, S. Functional analysis of a divergent system II protein, Ccs1, involved in c-type cytochrome biogenesis. J. Biol. Chem. 278, 2604–2613 (2002).
Molik, S., Karnauchov, I., Weidlich, C., Herrmann, R. G. & Klösgen, R. B. The Rieske Fe/S protein of the cytochrome b6/f complex in chloroplasts missing link in the evolution of protein transport pathways in chloroplasts? J. Biol. Chem. 276, 42761–42766 (2001).
Sandoval-Ibáñez, O. et al. De-etiolation-induced protein 1 (DEIP1) mediates assembly of the cytochrome b6f complex in Arabidopsis. Nat. Commun. 13, 4045 (2022).
Li, N. et al. The thylakoid membrane protein NTA1 is an assembly factor of the cytochrome b6f complex essential for chloroplast development in Arabidopsis. Plant. Commun. 4, 100509 (2022).
Penzler, J.-F. et al. A pgr5 suppressor screen uncovers two distinct suppression mechanisms and links cytochrome b6f complex stability to PGR5. Plant. Cell 36, 4245–4266 (2024).
Rolo, D., Schöttler, M. A., Sandoval-Ibáñez, O. & Bock, R. Structure, function, and assembly of photosystem I in thylakoid membranes of vascular plants. Plant Cell 36, 4080-4108 (2024).
Wittenberg, G. et al. Identification and characterization of a stable intermediate in photosystem I assembly in tobacco. Plant. J. 90, 478–490 (2017).
Göhre, V., Ossenbühl, F., Crèvecoeur, M., Eichacker, L. A. & Rochaix, J.-D. One of two Alb3 proteins is essential for the assembly of the photosystems and for cell survival in Chlamydomonas. Plant. Cell 18, 1454–1466 (2006).
Rolo, D. et al. Co-expressed with PSI assembly1 (CEPA1) is a photosystem I assembly factor in Arabidopsis. Plant Cell 36, 4179–4211 (2024).
Nellaepalli, S., Kim, R. G., Grossman, A. R. & Takahashi, Y. Interplay of four auxiliary factors is required for the assembly of photosystem I reaction center subcomplex. Plant. J. 106, 1075–1086 (2021).
Nellaepalli, S., Ozawa, S.-I., Kuroda, H. & Takahashi, Y. The photosystem I assembly apparatus consisting of Ycf3–Y3IP1 and Ycf4 modules. Nat. Commun. 9, 2439 (2018).
Gao, H. et al. Arabidopsis thaliana Nfu2 accommodates [2Fe-2S] or [4Fe-4S] clusters and is competent for in vitro maturation of chloroplast [2Fe-2S] and [4Fe-4S] cluster-containing proteins. Biochemistry 52, 6633–6645 (2013).
Nath, K., O’Donnell, J. P. & Lu, Y. Chloroplastic iron-sulfur scaffold protein NFU3 is essential to overall plant fitness. Plant. Signal. Behav. 12, e1282023 (2017).
Schwenkert, S. et al. Chloroplast HCF101 is a scaffold protein for [4Fe-4S] cluster assembly. Biochem. J. 425, 207–214 (2010).
Roland, M. et al. The plastidial Arabidopsis thaliana NFU1 protein binds and delivers [4Fe-4S] clusters to specific client proteins.J. Biol. Chem. 295, 1727–1742 (2020).
Heinnickel, M. et al. Tetratricopeptide repeat protein protects photosystem I from oxidative disruption during assembly. Proc. Natl Acad. Sci. USA 113, 2774–2779 (2016).
Roose, J. L., Frankel, L. K. & Bricker, T. M. The PsbP domain protein 1 functions in the assembly of lumenal domains in photosystem I. J. Biol. Chem. 289, 23776–23785 (2014).
Ozawa, S., Onishi, T. & Takahashi, Y. Identification and characterization of an assembly intermediate subcomplex of photosystem I in the green alga Chlamydomonas reinhardtii. J. Biol. Chem. 285, 20072–20079 (2010).
Yang, H. et al. Tetratricopeptide repeat protein Pyg7 is essential for photosystem I assembly by interacting with PsaC in Arabidopsis. Plant. J. 91, 950–961 (2017).
Liu, J. et al. PSBP-DOMAIN PROTEIN1, a nuclear-encoded thylakoid lumenal protein, is essential for photosystem I assembly in Arabidopsis. Plant. Cell 24, 4992–5006 (2012).
Zhang, A. et al. Uncovering the photosystem I assembly pathway in land plants. Nat. Plants 10, 645–660 (2024).
Caspy, I., Borovikova-Sheinker, A., Klaiman, D., Shkolnisky, Y. & Nelson, N. The structure of a triple complex of plant photosystem I with ferredoxin and plastocyanin. Nat. Plants 6, 1300–1305 (2020).
Dünschede, B. et al. Chloroplast SRP54 was recruited for posttranslational protein transport via complex formation with chloroplast SRP43 during land plant evolution.J. Biol. Chem. 290, 13104–13114 (2015).
Rathod, M. K. et al. Assembly apparatus of light-harvesting complexes: identification of Alb3.1–cpSRP–LHCP complexes in the green alga Chlamydomonas reinhardtii. Plant. Cell Physiol. 63, 70–81 (2021).
Wu, J. et al. Regulatory dynamics of the higher-plant PSI–LHCI supercomplex during state transitions. Mol. Plant. 16, 1937–1950 (2023).
Rühle, T., Leister, D. & Pasch, V. Chloroplast ATP synthase: from structure to engineering. Plant Cell 36, 3974–3996 (2024).
Pasch, J. C., Nickelsen, J. & Schünemann, D. The yeast split-ubiquitin system to study chloroplast membrane protein interactions. Appl. Microbiol. Biotechnol. 69, 440–447 (2005).
Rühle, T. et al. The Arabidopsis protein conserved only in the green lineage 160 promotes the assembly of the membranous part of the chloroplast ATP synthase. Plant. Physiol. 165, 207–226 (2014).
Fristedt, R. et al. The thylakoid membrane protein CGL160 supports CF1CF0 ATP synthase accumulation in Aarabidopsis thaliana. PLoS ONE 10, e0121658 (2015).
Zhang, L. et al. Nucleus-encoded protein BFA1 promotes efficient assembly of the chloroplast ATP synthase coupling factor 1. Plant. Cell 30, 1770–1788 (2018).
Grahl, S. et al. The Arabidopsis protein CGLD11 is required for chloroplast ATP synthase accumulation. Mol. Plant. 9, 885–899 (2016).
Zhang, L., Duan, Z., Zhang, J. & Peng, L. Biogenesis factor required for ATP synthase 3 facilitates assembly of the chloroplast ATP synthase complex. Plant. Physiol. 171, 1291–1306 (2016).
Mao, J. et al. PAB is an assembly chaperone that functions downstream of chaperonin 60 in the assembly of chloroplast ATP synthase coupling factor 1. Proc. Natl Acad. Sci. USA 112, 4152–4157 (2015).
Reiter, B. et al. CGL160-mediated recruitment of the coupling factor CF1 is required for efficient thylakoid ATP synthase assembly, photosynthesis, and chloroplast development in Arabidopsis. Plant. Cell 35, 488–509 (2022).
Eckardt, N. A. et al. Lighting the way: compelling open questions in photosynthesis research. Plant. Cell 36, 3914–3943 (2024).
Croce, R. et al. Perspectives on improving photosynthesis to increase crop yield. Plant Cell 36, 3944–3973 (2024).
Ort, D. R. et al. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc. Natl Acad. Sci. USA 112, 8529–8536 (2015).
South, P. F., Cavanagh, A. P., Liu, H. W. & Ort, D. R. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science. 363, eaat9077 (2019).
Ermakova, M., Lopez-Calcagno, P. E., Raines, C. A., Furbank, R. T. & Caemmerer, S. von. Overexpression of the rieske FeS protein of the cytochrome b6f complex increases C4 photosynthesis in Setaria viridis. Commun. Biol. 2, 314 (2019).
López-Calcagno, P. E. et al. Stimulating photosynthetic processes increases productivity and water-use efficiency in the field. Nat. Plants 6, 1054–1063 (2020).
Munekage, Y. et al. Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429, 579–582 (2004).
Labs, M., Rühle, T. & Leister, D. The antimycin A-sensitive pathway of cyclic electron flow: from 1963 to 2015. Photosynth. Res. 129, 231–238 (2016).
Strand, D. D., Fisher, N., Davis, G. A. & Kramer, D. M. Redox regulation of the antimycin A sensitive pathway of cyclic electron flow around photosystem I in higher plant thylakoids. Biochim. Biophys. Acta Bioenerg. 1857, 1–6 (2016).
Nakano, H., Yamamoto, H. & Shikanai, T. Contribution of NDH-dependent cyclic electron transport around photosystem I to the generation of proton motive force in the weak mutant allele of pgr5. Biochim. Biophys. Acta Bioenerg. 1860, 369–374 (2019).
Hosler, J. P. & Yocum, C. F. Regulation of cyclic photophosphorylation during ferredoxin-mediated electron transport effect of DCMU and the NADPH/NADP+ ratio. Plant. Physiol. 83, 965–969 (1987).
Hertle, A. P. et al. PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow. Mol. Cell 49, 511–523 (2013).
DalCorso, G. et al. A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 132, 273–285 (2008).
Rühle, T. et al. PGRL2 triggers degradation of PGR5 in the absence of PGRL1. Nat. Commun. 12, 3941 (2021).
Buchert, F., Mosebach, L., Gäbelein, P. & Hippler, M. PGR5 is required for efficient Q cycle in the cytochrome b6f complex during cyclic electron flow. Biochem. J. 477, 1631–1650 (2020).
Emrich-Mills, T. Z. et al. Tethering ferredoxin-NADP+ reductase to photosystem I promotes photosynthetic cyclic electron transfer. Plant Cell https://doi.org/10.1093/plcell/koaf042 (2025).
Peltier, G., Aro, E.-M. & Shikanai, T. NDH-1 and NDH-2 plastoquinone reductases in oxygenic photosynthesis. Annu. Rev. Plant. Biol. 67, 1–26 (2014).
Pribil, M., Labs, M. & Leister, D. Structure and dynamics of thylakoids in land plants. J. Exp. Bot. 65, 1955–1972 (2014).
Otani, T., Kato, Y. & Shikanai, T. Specific substitutions of light‐harvesting complex I proteins associated with photosystem I are required for supercomplex formation with chloroplast NADH dehydrogenase‐like complex. Plant. J. 94, 122–130 (2018).
Schuller, J. M. et al. Structural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer. Science 363, 257–260 (2019).
Zhang, C. et al. Structural insights into NDH-1 mediated cyclic electron transfer. Nat. Commun. 11, 888 (2020).
Laughlin, T. G., Bayne, A. N., Trempe, J.-F., Savage, D. F. & Davies, K. M. Structure of the complex I-like molecule NDH of oxygenic photosynthesis. Nature 566, 411–414 (2019).
Richardson, K. H. et al. Functional basis of electron transport within photosynthetic complex I. Nat. Commun. 12, 5387 (2021).
Pan, X. et al. Structural basis for electron transport mechanism of complex I-like photosynthetic NAD(P)H dehydrogenase. Nat. Commun. 11, 610 (2020).
Strand, D. D., Fisher, N. & Kramer, D. M. The higher plant plastid NAD(P)H dehydrogenase-like complex (NDH) is a high efficiency proton pump that increases ATP production by cyclic electron flow. J. Biol. Chem. 292, 11850–11860 (2017).
Kampjut, D. & Sazanov, L. A. The coupling mechanism of mammalian respiratory complex I. Science 370, eabc4209 (2020).
Kubicki, A., Funk, E., Westhoff, P. & Steinmüller, K. Differential expression of plastome-encoded ndh genes in mesophyll and bundle-sheath chloroplasts of the C4 plant Sorghum bicolor indicates that the complex I-homologous NAD(P)H-plastoquinone oxidoreductase is involved in cyclic electron transport. Planta 199, 276–281 (1996).
Takabayashi, A., Kishine, M., Asada, K., Endo, T. & Sato, F. Differential use of two cyclic electron flows around photosystem I for driving CO2-concentration mechanism in C4 photosynthesis. Proc. Natl Acad. Sci. USA 102, 16898–16903 (2005).
Majeran, W. et al. Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. Mol. Cell. Proteom. 7, 1609–1638 (2008).
Ermakova, M. et al. Chloroplast NADH dehydrogenase‐like complex‐mediated cyclic electron flow is the main electron transport route in C4 bundle sheath cells. N. Phytol. 243, 2187–2200 (2024).
Junge, W. Oxygenic photosynthesis: history, status and perspective. Q. Rev. Biophys. 52, e1 (2019).
Kok, B., Forbush, B. & McGloin, M. Cooperation of charges in photosynthetic O2 evolution–I. A linear four step mechanism. Photochem. Photobiol. 11, 457–475 (1970).
Joliot, P., Barbieri, G. & Chabaud, R. Un nouveau modele des centres photochimiques du systeme II. Photochem. Photobiol. 10, 309–329 (1969).
Klauss, A., Haumann, M. & Dau, H. Alternating electron and proton transfer steps in photosynthetic water oxidation. Proc. Natl Acad. Sci. USA 109, 16035–16040 (2012).
Kern, J. et al. Structures of the intermediates of Kok’s photosynthetic water oxidation clock. Nature 563, 421–425 (2018).
Kato, K. et al. High-resolution cryo-EM structure of photosystem II reveals damage from high-dose electron beams. Commun. Biol. 4, 382 (2021).
Ibrahim, M. et al. Untangling the sequence of events during the S2 → S3 transition in photosystem II and implications for the water oxidation mechanism. Proc. Natl Acad. Sci. USA 117, 12624–12635 (2020).
Young, I. D. et al. Structure of photosystem II and substrate binding at room temperature. Nature 540, 453–457 (2016).
Kern, J. et al. Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature. Science 340, 491–495 (2013).
Suga, M. et al. An oxyl/oxo mechanism for oxygen-oxygen coupling in PSII revealed by an X-ray free-electron laser. Science 366, 334–338 (2019).
Suga, M. et al. Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL. Nature 543, 131–135 (2017).
Bhowmick, A. et al. Structural evidence for intermediates during O2 formation in photosystem II. Nature 617, 629–636 (2023). Serial femtosecond crystallography using XFELs to probe structural changes at the active site of the enzyme, finally shedding light on the S3-to-S4-to-S0 transition of the oxygen evolving complex.
Dau, H. et al. The electron-proton bottleneck of photosynthetic oxygen evolution. Nature 617, 623–628 (2022).
Siegbahn, P. E. M. Structures and energetics for O2 formation in photosystem II. Acc. Chem. Res. 42, 1871–1880 (2009).
de Lichtenberg, C. et al. Assignment of the slowly exchanging substrate water of nature’s water-splitting cofactor. Proc. Natl Acad. Sci. USA 121, e2319374121 (2024).
Acknowledgements
M.P.J. acknowledges funding from the Leverhulme Trust grants RPG-2019-045 and RPG-2021-345 and Biotechnology and Biological Sciences Research Council (BBSRC) UK grants BB/V006630/1 and BB/W015269/1. M.P.J. would also like to thank B. Engel and W. Wietrzynski for collaboration in producing the spinach chloroplast tomograms, and A. Ruban, B. Rutherford, P. Nixon, N. Hunter and A. Hitchcock for useful discussions.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing interests.
Peer review
Peer review information
Nature Reviews Molecular Cell Biology thanks Johannes Messinger, Mei Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Glossary
- C4 type photosynthesis
-
This is a more efficient type of photosynthesis that concentrates carbon dioxide around the enzyme Rubisco.
- Jablonski diagram
-
A diagram that illustrates the electronic states and often the vibrational levels of a molecule.
- Serial femtosecond crystallography
-
A form of X-ray crystallography developed for use at X-ray free electron lasers (XFELs). Diffraction patterns from sub-micrometre crystals can be generated via single pulses of XFELs. However, the pulses are so intense that the crystals are destroyed, meaning data must be collected from many crystals in series.
- Signal recognition particle pathway
-
A cellular mechanism that directs nascent proteins with a signal sequence to the chloroplast thylakoid membrane by binding to the signal sequence as it emerges from the ribosome and then docking the ribosome-nascent chain complex with the thylakoid membrane through a receptor, allowing for co-translational protein targeting and translocation across the membrane.
- Twin-arginine translocation pathway
-
A protein transport system that moves folded proteins across the thylakoid membrane.
- X-ray free electron lasers
-
This approach combines the properties of X-ray sources with the properties of lasers, utilized for obtaining high-resolution structural and chemical information on isolated molecules.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Johnson, M.P. Structure, regulation and assembly of the photosynthetic electron transport chain. Nat Rev Mol Cell Biol 26, 667–690 (2025). https://doi.org/10.1038/s41580-025-00847-y
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41580-025-00847-y
This article is cited by
-
Kleptomaniac sea slugs steal their greens
Nature Reviews Molecular Cell Biology (2025)