+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Structure, regulation and assembly of the photosynthetic electron transport chain

An Author Correction to this article was published on 16 July 2025

This article has been updated

Abstract

The electron transfer chain of chloroplast thylakoid membranes uses solar energy to split water into electrons and protons, creating energetic gradients that drive the formation of photosynthetic fuel in the form of NADPH and ATP. These metabolites are then used to power the fixation of carbon dioxide into biomass through the Calvin–Benson–Bassham cycle in the chloroplast stroma. Recent advances in molecular genetics, structural biology and spectroscopy have provided an unprecedented understanding of the molecular events involved in photosynthetic electron transfer from photon capture to ATP production. Specifically, we have gained insights into the assembly of the photosynthetic complexes into larger supercomplexes, thylakoid membrane organization and the mechanisms underpinning efficient light harvesting, photoprotection and oxygen evolution. In this Review, I focus on the angiosperm plant thylakoid system, outlining our current knowledge on the structure, function, regulation and assembly of each component of the photosynthetic chain. I explain how solar energy is harvested and converted into chemical energy by the photosynthetic electron transfer chain, how its components are integrated into a complex membrane macrostructure and how this organization contributes to regulation and photoprotection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the photosynthetic electron transfer chain and Calvin–Benson–Bassham cycle.
Fig. 2: Light-harvesting antenna structure of the photosystems.
Fig. 3: Catalytic mechanisms of electron transfer chain components.
Fig. 4: Lateral heterogeneity in thylakoid organization.
Fig. 5: Regulation of the photosynthetic electron transfer chain.
Fig. 6: Assembly pathway for the four core electron transfer chain components.

Similar content being viewed by others

Change history

References

  1. Hohmann-Marriott, M. F. & Blankenship, R. E. Evolution of photosynthesis. Annu. Rev. Plant. Biol. 62, 515–548 (2011).

    Article  PubMed  CAS  Google Scholar 

  2. Fischer, W. W., Hemp, J. & Johnson, J. E. Evolution of oxygenic photosynthesis. Annu. Rev. Earth Planet. Sci. 44, 647–683 (2016).

    Article  CAS  Google Scholar 

  3. Nelson, N. & Junge, W. Structure and energy transfer in photosystems of oxygenic photosynthesis. Annu. Rev. Biochem. 84, 1–25 (2015).

    Article  Google Scholar 

  4. Nelson, N. & Ben-Shem, A. The complex architecture of oxygenic photosynthesis. Nat. Rev. Mol. Cell Biol. 5, 971–982 (2004).

    Article  PubMed  CAS  Google Scholar 

  5. Zhu, X.-G., Long, S. P. & Ort, D. R. Improving photosynthetic efficiency for greater yield. Plant. Biol. 61, 235–261 (2010).

    Article  CAS  Google Scholar 

  6. Barber, J. Biological solar energy. Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci. 365, 1007–1023 (2007).

    Article  CAS  Google Scholar 

  7. Nocera, D. G. The artificial leaf. Acc. Chem. Res. 45, 767–776 (2012).

    Article  PubMed  CAS  Google Scholar 

  8. Scholes, G. D., Fleming, G. R., Olaya-Castro, A. & van Grondelle, R. Lessons from nature about solar light harvesting. Nat. Chem. 3, 763–774 (2011).

    Article  PubMed  CAS  Google Scholar 

  9. Lawrence, J. M. et al. Rewiring photosynthetic electron transport chains for solar energy conversion. Nat. Rev. Bioeng. 1, 887–905 (2023).

    Article  CAS  Google Scholar 

  10. Singh, A. K., Kishore, G. M. & Pakrasi, H. B. Emerging platforms for co-utilization of one-carbon substrates by photosynthetic organisms. Curr. Opin. Biotechnol. 53, 201–208 (2018).

    Article  PubMed  CAS  Google Scholar 

  11. Whatley, F. R., Tagawa, K. & Arnon, D. I. Separation of the light and dark reactions in electron transfer during photosynthesis. Proc. Natl Acad. Sci. USA 49, 266–270 (1963).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kühlbrandt, W. The resolution revolution. Science 343, 1443–1444 (2014).

    Article  PubMed  Google Scholar 

  13. Berera, R., Grondelle, Rvan & Kennis, J. T. M. Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems. Photosynth. Res. 101, 105–118 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Liu, H. et al. CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants. Mol. Plant. 10, 530–532 (2017).

    Article  PubMed  CAS  Google Scholar 

  15. Miki, D., Zhang, W., Zeng, W., Feng, Z. & Zhu, J.-K. CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation. Nat. Commun. 9, 1967 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang, Z. et al. Insights into the molecular mechanisms of CRISPR/Cas9-mediated gene targeting at multiple loci in Arabidopsis. Plant. Physiol. 190, 2203–2216 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Ruf, S. et al. High-efficiency generation of fertile transplastomic Arabidopsis plants. Nat. Plants 5, 282–289 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Mazor, Y., Borovikova, A. & Nelson, N. The structure of plant photosystem I super-complex at 2.8 Å resolution. eLife 4, e07433 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wei, X. et al. Structure of spinach photosystem II–LHCII supercomplex at 3.2 Å resolution. Nature 534, 69–74 (2016). This article reports the first high-resolution structure of the PSII–LHCII supercomplex from plants.

    Article  PubMed  CAS  Google Scholar 

  20. Mazor, Y., Borovikova, A., Caspy, I. & Nelson, N. Structure of the plant photosystem I supercomplex at 2.6 Å resolution. Nat. Plants 3, 17014 (2017).

    Article  PubMed  CAS  Google Scholar 

  21. Su, X. et al. Structure and assembly mechanism of plant C2S2M2-type PSII–LHCII supercomplex. Science 357, 815–820 (2017).

    Article  PubMed  CAS  Google Scholar 

  22. Pan, X. et al. Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II. Science 360, 1109–1113 (2018). Reports the first high-resolution structure of the state transition complex of PSI and LHCII.

    Article  PubMed  CAS  Google Scholar 

  23. Hahn, A., Vonck, J., Mills, D. J., Meier, T. & Kühlbrandt, W. Structure, mechanism, and regulation of the chloroplast ATP synthase. Science 360, eaat4318 (2018). This article reports the structure of the chloroplast ATP synthase enzyme and structural details behind its redox regulation.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Malone, L. A. et al. Cryo-EM structure of the spinach cytochrome b6f complex at 3.6 Å resolution. Nature 575, 535–539 (2019). Reports a high-resolution structure of the higher plant cytochrome b6f complex.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Su, X. et al. Supramolecular assembly of chloroplast NADH dehydrogenase-like complex with photosystem I from Arabidopsis thaliana. Mol. Plant. 15, 454–467 (2022).

    Article  PubMed  CAS  Google Scholar 

  26. Shen, L. et al. Architecture of the chloroplast PSI–NDH supercomplex in Hordeum vulgare. Nature 601, 649–654 (2022). This article reports a high-resolution structure of the plant PSI–NDH supercomplex.

    Article  PubMed  CAS  Google Scholar 

  27. Sarewicz, M. et al. High-resolution cryo-EM structures of plant cytochrome b6f at work. Sci. Adv. 9, eadd9688 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hussein, R. et al. Cryo-electron microscopy reveals hydrogen positions and water networks in photosystem II. Science 384, 1349–1355 (2024). This article reports a 1.7 Å structure of the PS core, highlighting the water channels associated with water oxidation and plastoquinone reduction.

    Article  PubMed  CAS  Google Scholar 

  29. Wietrzynski, W. et al. Charting the native architecture of Chlamydomonas thylakoid membranes with single-molecule precision. eLife 9, e53740 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wietrzynski, W. et al. Molecular architecture of thylakoid membranes within intact spinach chloroplasts. eLife https://doi.org/10.7554/eLife.105496 (2025). A cryo-ET study revealing the native membrane structure and distribution of photosynthetic complexes within a native spinach chloroplast.

  31. Nelson, N. & Yocum, C. F. Structure and function of photosystems I and II. Annu. Rev. Plant. Biol. 57, 521–565 (2006).

    Article  PubMed  CAS  Google Scholar 

  32. Hill, R. & Bendall, F. Function of the two cytochrome components in chloroplasts: a working hypothesis. Nature 186, 136–137 (1960).

    Article  CAS  Google Scholar 

  33. Duysens, L. N. M., Amesz, J. & Kamp, B. M. Two photochemical systems in photosynthesis. Nature 190, 510–511 (1961).

    Article  PubMed  CAS  Google Scholar 

  34. Mitchell, P. The protonmotive Q cycle: a general formulation. FEBS Lett. 59, 137–139 (1975).

    Article  PubMed  CAS  Google Scholar 

  35. Haehnel, W., Pröpper, A. & Krause, H. Evidence for complexed plastocyanin as the immediate electron donor of P-700. Biochim. Biophys. Acta Bioenerg. 593, 384–399 (1980).

    Article  CAS  Google Scholar 

  36. Tagawa, K., Tsujimoto, H. Y. & Arnon, D. I. Role of chloroplast ferredoxin in the energy conversion process of photosynthesis. Proc. Natl Acad. Sci. USA 49, 567–572 (1963).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Malone, L. A., Proctor, M. S., Hitchcock, A., Hunter, C. N. & Johnson, M. P. Cytochrome b6f — orchestrator of photosynthetic electron transfer. Biochim. Biophys. Acta Bioenerg. 1862, 148380 (2021).

    Article  PubMed  CAS  Google Scholar 

  38. Sarewicz, M. et al. Catalytic reactions and energy conservation in the cytochrome bc1 and b6f complexes of energy-transducing membranes. Chem. Rev. 121, 2020–2108 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Mitchell, P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191, 144–148 (1961).

    Article  PubMed  CAS  Google Scholar 

  40. Jagendorf, A. T. Acid-base transitions and phosphorylation by chloroplasts. Fed. Proc. 26, 1361–1369 (1967).

    PubMed  CAS  Google Scholar 

  41. Bassham, J. A. et al. The path of carbon in photosynthesis. XXI. The cyclic regeneration of carbon dioxide acceptor 1. J. Am. Chem. Soc. 76, 1760–11770 (1954).

    Article  Google Scholar 

  42. Sharkey, T. D. Discovery of the canonical Calvin–Benson cycle. Photosynth. Res. 140, 235–252 (2019).

    Article  PubMed  CAS  Google Scholar 

  43. Raines, C. A. The Calvin cycle revisited. Photosynth. Res. 75, 1–10 (2003).

    Article  PubMed  CAS  Google Scholar 

  44. Noctor, G. & Foyer, C. H. A re-evaluation of the ATP:NADPH budget during C3 photosynthesis: a contribution from nitrate assimilation and its associated respiratory activity? J. Exp. Bot. 49, 1895–1908 (1998).

    CAS  Google Scholar 

  45. Kramer, D. M. & Evans, J. R. The importance of energy balance in improving photosynthetic productivity. Plant. Physiol. 155, 70–78 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Allen, J. F. Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain. Trends Plant. Sci. 8, 15–19 (2003).

    Article  PubMed  CAS  Google Scholar 

  47. Rutherford, A. W., Osyczka, A. & Rappaport, F. Back‐reactions, short‐circuits, leaks and other energy wasteful reactions in biological electron transfer: redox tuning to survive life in O2. FEBS Lett. 586, 603–616 (2012).

    Article  PubMed  CAS  Google Scholar 

  48. Dau, H. & Zaharieva, I. Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation. Acc. Chem. Res. 42, 1861–1870 (2009).

    Article  PubMed  CAS  Google Scholar 

  49. Shevela, D., Kern, J. F., Govindjee, G. & Messinger, J. Solar energy conversion by photosystem II: principles and structures. Photosynth. Res. 156, 279–307 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Paweł, R., Aleksandra, U. & Elżbieta, R. Enzymatic kinetics of photosystem II with DCBQ as a substrate in extended Michaelis–Menten model. J. Photochem. Photobiol. B: Biol. 247, 112780 (2023).

    Article  Google Scholar 

  51. Croce, R. & Amerongen, Hvan Natural strategies for photosynthetic light harvesting. Nat. Chem. Biol. 10, 492–501 (2014).

    Article  PubMed  CAS  Google Scholar 

  52. Fiebig, O. C., Harris, D., Wang, D., Hoffmann, M. P. & Schlau-Cohen, G. S. Ultrafast dynamics of photosynthetic light harvesting: strategies for acclimation across organisms. Annu. Rev. Phys. Chem. 74, 493–520 (2023).

    Article  PubMed  CAS  Google Scholar 

  53. Björn, L. O., Papageorgiou, G. C., Blankenship, R. E., & Govindjee. A viewpoint: why chlorophyll a? Photosynth. Res. 99, 85–98 (2009).

    Article  PubMed  Google Scholar 

  54. Ruban, A. V. & Johnson, M. P. Xanthophylls as modulators of membrane protein function. Arch. Biochem. Biophys. 504, 78–85 (2010).

    Article  PubMed  CAS  Google Scholar 

  55. Ruban, A. In Carotenoids: Physical, Chemical, and Biological Functions and Properties (ed. Landrum, J. T) 113–136 (CRC Press, 2009).

  56. Fiedor, L., Dudkowiak, A. & Pilch, M. The origin of the dark S1 state in carotenoids: a comprehensive model. J. R. Soc. Interface 16, 20190191 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gillbro, T., Sundström, V., Sandström, Å., Spangfort, M. & Andersson, B. Energy transfer within the isolated light‐harvesting chlorophyll a/b protein of photosystem II (LHC‐II). FEBS Lett. 193, 267–270 (1985).

    Article  CAS  Google Scholar 

  58. Chenu, A. & Scholes, G. D. Coherence in energy transfer and photosynthesis. Annu. Rev. Phys. Chem. 66, 69–96 (2015).

    Article  PubMed  CAS  Google Scholar 

  59. Liu, Z. et al. Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428, 287–292 (2004).

    Article  PubMed  CAS  Google Scholar 

  60. Standfuss, J., Scheltinga, A. C. T., van Lamborghini, M. & Kühlbrandt, W. Mechanisms of photoprotection and nonphotochemical quenching in pea light‐harvesting complex at 2.5 Å resolution. EMBO J. 24, 919–928 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Ferreira, K. N., Iverson, T. M., Maghlaoui, K., Barber, J. & Iwata, S. Architecture of the photosynthetic oxygen-evolving center. Science 303, 1831–1838 (2004).

    Article  PubMed  CAS  Google Scholar 

  62. Zouni, A. et al. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409, 739–743 (2001).

    Article  PubMed  CAS  Google Scholar 

  63. Umena, Y., Kawakami, K., Shen, J.-R. & Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473, 55–60 (2011).

    Article  PubMed  CAS  Google Scholar 

  64. Bezouwen, L. Svan et al. Subunit and chlorophyll organization of the plant photosystem II supercomplex. Nat. Plants 3, 17080 (2017).

    Article  PubMed  Google Scholar 

  65. Kouřil, R., Wientjes, E., Bultema, J. B., Croce, R. & Boekema, E. J. High-light vs. low-light: effect of light acclimation on photosystem II composition and organization in Arabidopsis thaliana. Biochim. Biophys. Acta Bioenerg. 1827, 411–419 (2013).

    Article  Google Scholar 

  66. Shan, J., Niedzwiedzki, D. M., Tomar, R. S., Liu, Z. & Liu, H. Architecture and functional regulation of a plant PSII–LHCII megacomplex. Sci. Adv. 10, eadq9967 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Li, X. et al. Structure of the red-shifted Fittonia albivenis photosystem I. Nat. Commun. 15, 6325 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Benson, S. L. et al. An intact light harvesting complex I antenna system is required for complete state transitions in Arabidopsis. Nat. Plants 1, 15176 (2015).

    Article  PubMed  CAS  Google Scholar 

  69. Yadav, K. N. S. et al. Supercomplexes of plant photosystem I with cytochrome b6f, light-harvesting complex II and NDH. Biochim. Biophys. Acta Bioenerg. 1858, 12–20 (2017).

    Article  PubMed  CAS  Google Scholar 

  70. Crepin, A., Kučerová, Z., Kosta, A., Durand, E. & Caffarri, S. Isolation and characterization of a large photosystem I–light‐harvesting complex II supercomplex with an additional Lhca1–a4 dimer in Arabidopsis. Plant. J. 102, 398–409 (2020).

    Article  PubMed  CAS  Google Scholar 

  71. Shi, L.-X., Hall, M., Funk, C. & Schröder, W. P. Photosystem II, a growing complex: updates on newly discovered components and low molecular mass proteins. Biochim. Biophys. Acta Bioenerg. 1817, 13–25 (2012).

    Article  CAS  Google Scholar 

  72. Fantuzzi, A. et al. Bicarbonate-controlled reduction of oxygen by the QA semiquinone in photosystem II in membranes. Proc. Natl Acad. Sci. USA 119, e2116063119 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Lubitz, W., Chrysina, M. & Cox, N. Water oxidation in photosystem II. Photosynth. Res. 142, 105–125 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Cardona, T., Sedoud, A., Cox, N. & Rutherford, A. W. Charge separation in photosystem II: a comparative and evolutionary overview. Biochim. Biophys. Acta Bioenerg. 1817, 26–43 (2012).

    Article  CAS  Google Scholar 

  75. Allgöwer, F., Gamiz-Hernandez, A. P., Rutherford, A. W. & Kaila, V. R. I. Molecular principles of redox-coupled protonation dynamics in photosystem II. J. Am. Chem. Soc. 144, 7171–7180 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Tracewell, C. A., Vrettos, J. S., Bautista, J. A., Frank, H. A. & Brudvig, G. W. Carotenoid photooxidation in photosystem II. Arch. Biochem. Biophys. 385, 61–69 (2001).

    Article  PubMed  CAS  Google Scholar 

  77. Sacksteder, C. A., Kanazawa, A., Jacoby, M. E. & Kramer, D. M. The proton to electron stoichiometry of steady-state photosynthesis in living plants: a proton-pumping Q cycle is continuously engaged. Proc. Natl Acad. Sci. USA 97, 14283–14288 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Kurisu, G., Zhang, H., Smith, J. L. & Cramer, W. A. Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity. Science 302, 1009–11014 (2003).

    Article  PubMed  Google Scholar 

  79. Stroebel, D., Choquet, Y., Popot, J.-L. & Picot, D. An atypical haem in the cytochrome b6f complex. Nature 426, 413–418 (2003).

    Article  PubMed  CAS  Google Scholar 

  80. Proctor, M. S. et al. Cryo-EM structures of the Synechocystis sp. PCC 6803 cytochrome b6f complex with and without the regulatory PetP subunit. Biochem. J. 479, 1487–1503 (2022).

    Article  PubMed  CAS  Google Scholar 

  81. Crofts, A. R. & Meinhardt, S. W. A Q-cycle mechanism for the cyclic electron-transfer chain of Rhodopseudomonas sphaeroides. Biochem. Soc. Trans. 10, 201–203 (1982).

    Article  PubMed  CAS  Google Scholar 

  82. Hasan, S. S., Yamashita, E., Baniulis, D. & Cramer, W. A. Quinone-dependent proton transfer pathways in the photosynthetic cytochrome b6f complex. Proc. Natl Acad. Sci. USA 110, 4297–4302 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Pintscher, S. et al. Molecular basis of plastoquinone reduction in plant cytochrome b6f. Nat. Plants 10, 1814–1825 (2024). This article shows structural details of the movement of the ISP from cyt b6f involved in electron transfer in the high potential chain.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Tikhonov, A. N. The cytochrome b6f complex at the crossroad of photosynthetic electron transport pathways. Plant. Physiol. Biochem. 81, 163–183 (2014).

    Article  PubMed  CAS  Google Scholar 

  85. Hasan, S. S. & Cramer, W. A. On rate limitations of electron transfer in the photosynthetic cytochrome b6f complex. Phys. Chem. Chem. Phys. 14, 13853 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Hasan, S. S. & Cramer, W. A. Internal lipid architecture of the hetero-oligomeric cytochrome b6f complex. Structure 22, 1008–1015 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Sarewicz, M. et al. Metastable radical state, nonreactive with oxygen, is inherent to catalysis by respiratory and photosynthetic cytochromes bc1/b6f. Proc. Natl Acad. Sci. USA 114, 1323–1328 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Hasan, S. S., Yamashita, E. & Cramer, W. A. Transmembrane signaling and assembly of the cytochrome b6f-lipidic charge transfer complex. Biochim. Biophys. Acta Bioenerg. 1827, 1295–1308 (2013).

    Article  CAS  Google Scholar 

  89. Jensen, P. E., Haldrup, A., Rosgaard, L. & Scheller, H. V. Molecular dissection of photosystem I in higher plants: topology, structure and function. Physiol. Plant. 119, 313–321 (2003).

    Article  CAS  Google Scholar 

  90. Brettel, K. Electron transfer and arrangement of the redox cofactors in photosystem I. Biochim. Biophys. Acta Bioenerg. 1318, 322–373 (1997).

    Article  CAS  Google Scholar 

  91. Brettel, K. & Leibl, W. Electron transfer in photosystem I. Biochim. Biophys. Acta Bioenerg. 1507, 100–114 (2001).

    Article  CAS  Google Scholar 

  92. Srinivasan, N. & Golbeck, J. H. Protein–cofactor interactions in bioenergetic complexes: the role of the A1A and A1B phylloquinones in photosystem I. Biochim. Biophys. Acta Bioenerg. 1787, 1057–1088 (2009).

    Article  CAS  Google Scholar 

  93. Carrillo, N. & Ceccarelli, E. A. Open questions in ferredoxin‐NADP+ reductase catalytic mechanism. Eur. J. Biochem. 270, 1900–1915 (2003).

    Article  PubMed  CAS  Google Scholar 

  94. Goss, T. & Hanke, G. The end of the line: can ferredoxin and ferredoxin NADP(H) oxidoreductase determine the fate of photosynthetic electrons? Curr. Protein Pept. Sci. 15, 385–393 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Geigenberger, P., Thormählen, I., Daloso, D. M. & Fernie, A. R. The unprecedented versatility of the plant thioredoxin system. Trends Plant. Sci. 22, 249–262 (2017).

    Article  PubMed  CAS  Google Scholar 

  96. Thormählen, I. et al. Thioredoxins play a crucial role in dynamic acclimation of photosynthesis in fluctuating light. Mol. Plant. 10, 168–182 (2017).

    Article  PubMed  Google Scholar 

  97. Zimmer, D. et al. Topology of the redox network during induction of photosynthesis as revealed by time-resolved proteomics in tobacco. Sci. Adv. 7, eabi8307 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Buchanan, B. B. The path to thioredoxin and redox regulation in chloroplasts. Annu. Rev. Plant. Biol. 67, 1–24 (2016).

    Article  PubMed  CAS  Google Scholar 

  99. Gurrieri, L., Fermani, S., Zaffagnini, M., Sparla, F. & Trost, P. Calvin–Benson cycle regulation is getting complex. Trends Plant. Sci. 26, 898–912 (2021).

    Article  PubMed  CAS  Google Scholar 

  100. Yamori, W. & Shikanai, T. Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annu. Rev. Plant. Biol. 67, 1–26 (2015).

    Google Scholar 

  101. Kühlbrandt, W. Structure and mechanisms of F-type ATP synthases. Annu. Rev. Biochem. 88, 1–35 (2019).

    Article  Google Scholar 

  102. Yang, J.-H., Williams, D., Kandiah, E., Fromme, P. & Chiu, P.-L. Structural basis of redox modulation on chloroplast ATP synthase. Commun. Biol. 3, 482 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Rühle, T. & Leister, D. Assembly of F1F0-ATP synthases. Biochim. Biophys. Acta Bioenerg. 1847, 849–860 (2015).

    Article  Google Scholar 

  104. Junge, W. & Nelson, N. ATP synthase. Annu. Rev. Biochem. 84, 631–657 (2015).

    Article  PubMed  CAS  Google Scholar 

  105. Daum, B., Nicastro, D., Austin, J., McIntosh, J. R. & Kühlbrandt, W. Arrangement of photosystem II and ATP synthase in chloroplast membranes of spinach and pea. Plant. Cell 22, 1299–1312 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Boyer, P. D. The ATP synthase — a splendid molecular machine. Annu. Rev. Biochem. 66, 717–749 (1997).

    Article  PubMed  CAS  Google Scholar 

  107. Sekiguchi, T. et al. Chloroplast ATP synthase is reduced by both f-type and m-type thioredoxins. Biochim. Biophys. Acta Bioenerg. 1861, 148261 (2020).

    Article  PubMed  CAS  Google Scholar 

  108. Kanazawa, A. & Kramer, D. M. In vivo modulation of nonphotochemical exciton quenching (NPQ) by regulation of the chloroplast ATP synthase. Proc. Natl Acad. Sci. USA 99, 12789–12794 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Boudière, L. et al. Glycerolipids in photosynthesis: composition, synthesis and trafficking. Biochim. Biophys. Acta Bioenerg. 1837, 470–480 (2014).

    Article  Google Scholar 

  110. Jarvis, P. et al. Galactolipid deficiency and abnormal chloroplast development in the Arabidopsis MGD synthase 1 mutant. Proc. Natl Acad. Sci. USA 97, 8175–8179 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Boardman, N. K. & Anderson, J. M. Isolation from spinach chloroplasts of particles containing different proportions of chlorophyll a and chlorophyll b and their possible role in the light reactions of photosynthesis. Nature 203, 166–167 (1964).

    Article  CAS  Google Scholar 

  112. Anderson, J. M. & Andersson, B. The architecture of photosynthetic membranes: lateral and transverse organization. Trends Biochem. Sci. 7, 288–292 (1982).

    Article  CAS  Google Scholar 

  113. Staehelin, L. A. Reversible particle movements associated with unstacking and restacking of chloroplast membranes in vitro. J. Cell Biol. 71, 136–158 (1976).

    Article  PubMed  CAS  Google Scholar 

  114. Dekker, J. P. & Boekema, E. J. Supramolecular organization of thylakoid membrane proteins in green plants. Biochim. Biophys. Acta Bioenerg. 1706, 12–39 (2005).

    Article  CAS  Google Scholar 

  115. van Roon, H., van Breemen, J. F. L., de Weerd, F. L., Dekker, J. P. & Boekema, E. J. Solubilization of green plant thylakoid membranes with n-dodecyl-α,D-maltoside. Implications for the structural organization of the photosystem II, photosystem I, ATP synthase and cytochrome b6f complexes. Photosynth. Res. 64, 155–166 (2000).

    Article  PubMed  Google Scholar 

  116. Wood, W. H. J. et al. Dynamic thylakoid stacking regulates the balance between linear and cyclic photosynthetic electron transfer. Nat. Plants 4, 116–127 (2018).

    Article  PubMed  CAS  Google Scholar 

  117. Phuthong, W. et al. The use of contact mode atomic force microscopy in aqueous medium for structural analysis of spinach photosynthetic complexes. Plant. Physiol. 169, 1318–1332 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Sznee, K. et al. Jumping mode atomic force microscopy on grana membranes from spinach. J. Biol. Chem. 286, 39164–39171 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Johnson, M. P., Vasilev, C., Olsen, J. D. & Hunter, C. N. Nanodomains of cytochrome b6f and photosystem II complexes in spinach grana thylakoid membranes. Plant. Cell 26, 3051–3061 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Austin, J. R. & Staehelin, L. A. Three-dimensional architecture of grana and stroma thylakoids of higher plants as determined by electron tomography. Plant. Physiol. 155, 1601–1611 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Bussi, Y. et al. Fundamental helical geometry consolidates the plant photosynthetic membrane. Proc. Natl Acad. Sci. USA 116, 22366–22375 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Kiss, A. Z., Ruban, A. V. & Horton, P. The PsbS protein controls the organization of the photosystem II antenna in higher plant thylakoid membranes. J. Biol. Chem. 283, 3972–3978 (2008).

    Article  PubMed  CAS  Google Scholar 

  123. Garty, Y. et al. Thylakoid membrane stacking controls electron transport mode during the dark-to-light transition by adjusting the distances between PSI and PSII. Nat. Plants 10, 512–524 (2024).

    Article  PubMed  CAS  Google Scholar 

  124. Puthiyaveetil, S., Oort, Bvan & Kirchhoff, H. Surface charge dynamics in photosynthetic membranes and the structural consequences. Nat. Plants 3, 17020 (2017).

    Article  PubMed  CAS  Google Scholar 

  125. Armbruster, U. et al. Arabidopsis CURVATURE THYLAKOID1 proteins modify thylakoid architecture by inducing membrane curvature. Plant. Cell 25, 2661–2678 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Pribil, M. et al. Fine-tuning of photosynthesis requires CURVATURE THYLAKOID1-mediated thylakoid plasticity. Plant. Physiol. 176, 2351–2364 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Wood, W. H. J., Barnett, S. F. H., Flannery, S., Hunter, C. N. & Johnson, M. P. Dynamic thylakoid stacking is regulated by LHCII phosphorylation but not its interaction with PSI. Plant. Physiol. 180, 2152–2166 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  128. Johnson, M. P. & Wientjes, E. The relevance of dynamic thylakoid organisation to photosynthetic regulation. Biochim. Biophys. Acta Bioenerg. 1861, 148039 (2020).

    Article  PubMed  CAS  Google Scholar 

  129. Höhner, R. et al. Plastocyanin is the long-range electron carrier between photosystem II and photosystem I in plants. Proc. Natl Acad. Sci. USA 117, 15354–15362 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Kirchhoff, H. et al. Dynamic control of protein diffusion within the granal thylakoid lumen. Proc. Natl Acad. Sci. USA 108, 20248–20253 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Hepworth, C. et al. Dynamic thylakoid stacking and state transitions work synergistically to avoid acceptor-side limitation of photosystem I. Nat. Plants 7, 87–98 (2021).

    Article  PubMed  CAS  Google Scholar 

  132. Foyer, C. H. & Hanke, G. ROS production and signalling in chloroplasts: cornerstones and evolving concepts. Plant. J. 111, 642–661 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Kyle, D. J., Staehelin, L. A. & Arntzen, C. J. Lateral mobility of the light-harvesting complex in chloroplast membranes controls excitation energy distribution in higher plants. Arch. Biochem. Biophys. 222, 527–541 (1983).

    Article  PubMed  CAS  Google Scholar 

  134. Johnson, M. P. et al. Photoprotective energy dissipation involves the reorganization of photosystem II light-harvesting complexes in the grana membranes of spinach chloroplasts. Plant. Cell 23, 1468–1479 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Herbstová, M., Tietz, S., Kinzel, C., Turkina, M. V. & Kirchhoff, H. Architectural switch in plant photosynthetic membranes induced by light stress. Proc. Natl Acad. Sci. USA 109, 20130–20135 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Ruban, A. V. & Johnson, M. P. Dynamics of higher plant photosystem cross-section associated with state transitions. Photosynth. Res. 99, 173–183 (2009).

    Article  PubMed  CAS  Google Scholar 

  137. Spitschan, M., Aguirre, G. K., Brainard, D. H. & Sweeney, A. M. Variation of outdoor illumination as a function of solar elevation and light pollution. Sci. Rep. 6, 26756 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Goldschmidt-Clermont, M. & Bassi, R. Sharing light between two photosystems: mechanism of state transitions. Curr. Opin. Plant. Biol. 25, 71–78 (2015).

    Article  PubMed  CAS  Google Scholar 

  139. Wientjes, E., Amerongen, Hvan & Croce, R. LHCII is an antenna of both photosystems after long-term acclimation. Biochim. Biophys. Acta Bioenerg. 1827, 420–426 (2013).

    Article  CAS  Google Scholar 

  140. Horton, P. & Black, M. T. Activation of adenosine 5′ triphosphate‐induced quenching of chlorophyll fluorescence by reduced plastoquinone. FEBS Lett. 119, 141–144 (1980).

    Article  CAS  Google Scholar 

  141. Vener, A. V., Kan, P. J. M., van, Rich, P. R., Ohad, I. & Andersson, B. Plastoquinol at the quinol oxidation site of reduced cytochrome bf mediates signal transduction between light and protein phosphorylation: thylakoid protein kinase deactivation by a single-turnover flash. Proc. Natl Acad. Sci. USA 94, 1585–1590 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Bellafiore, S., Barneche, F., Peltier, G. & Rochaix, J.-D. State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433, 892–895 (2005).

    Article  PubMed  CAS  Google Scholar 

  143. Shapiguzov, A. et al. Activation of the Stt7/STN7 kinase through dynamic interactions with the cytochrome b6f complex. Plant. Physiol. 171, 82–92 (2015).

    Article  Google Scholar 

  144. Allen, J. F., Bennett, J., Steinback, K. E. & Arntzen, C. J. Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems. Nature 291, 25–29 (1981).

    Article  CAS  Google Scholar 

  145. Su, X. et al. Antenna arrangement and energy transfer pathways of a green algal photosystem-I–LHCI supercomplex. Nat. Plants 5, 273–281 (2019).

    Article  PubMed  CAS  Google Scholar 

  146. Pan, X. et al. Structural basis of LhcbM5-mediated state transitions in green algae. Nat. Plants 7, 1119–1131 (2021).

    Article  PubMed  CAS  Google Scholar 

  147. Pribil, M., Pesaresi, P., Hertle, A., Barbato, R. & Leister, D. Role of plastid protein phosphatase TAP38 in LHCII dephosphorylation and thylakoid electron flow. PLoS Biol. 8, e1000288 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Shapiguzov, A. et al. The PPH1 phosphatase is specifically involved in LHCII dephosphorylation and state transitions in Arabidopsis. Proc. Natl Acad. Sci. USA 107, 4782–4787 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Pfannschmidt, T., Nilsson, A. & Allen, J. F. Photosynthetic control of chloroplast gene expression. Nature 397, 625–628 (1999).

    Article  CAS  Google Scholar 

  150. Pfannschmidt, T., Schütze, K., Brost, M. & Oelmüller, R. A novel mechanism of nuclear photosynthesis gene regulation by redox signals from the chloroplast during photosystem stoichiometry adjustment. J. Biol. Chem. 276, 36125–36130 (2001).

    Article  PubMed  CAS  Google Scholar 

  151. Rintamäki, E., Martinsuo, P., Pursiheimo, S. & Aro, E.-M. Cooperative regulation of light-harvesting complex II phosphorylation via the plastoquinol and ferredoxin-thioredoxin system in chloroplasts. Proc. Natl Acad. Sci. USA 97, 11644–11649 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Fernyhough, P., Foyer, C. H. & Horton, P. Increase in the level of thylakoid protein phosphorylation in maize mesophyll chloroplasts by decrease in the transthylakoid pH gradient. FEBS Lett. 176, 133–138 (1984).

    Article  CAS  Google Scholar 

  153. Murchie, E. H. & Ruban, A. V. Dynamic non‐photochemical quenching in plants: from molecular mechanism to productivity. Plant. J. 101, 885–896 (2020).

    Article  PubMed  CAS  Google Scholar 

  154. Li, Z., Wakao, S., Fischer, B. B. & Niyogi, K. K. Sensing and responding to excess light. Annu. Rev. Plant. Biol. 60, 239–260 (2009).

    Article  PubMed  CAS  Google Scholar 

  155. Gall, A. et al. Molecular adaptation of photoprotection: triplet states in light-harvesting proteins. Biophys. J. 101, 934–942 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Ruban, A. V. & Wilson, S. The mechanism of non-photochemical quenching in plants: localization and driving forces. Plant. Cell Physiol. 62, 1063–1072 (2020).

    Article  Google Scholar 

  157. Demmig-Adams, B. Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim. Biophys. Acta Bioenerg. 1020, 1–24 (1990).

    Article  CAS  Google Scholar 

  158. Bratt, C. E., Arvidsson, P.-O., Carlsson, M. & Åkerlund, H.-E. Regulation of violaxanthin de-epoxidase activity by pH and ascorbate concentration. Photosynth. Res. 45, 169–175 (1995).

    Article  PubMed  CAS  Google Scholar 

  159. Li, X.-P. et al. Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J. Biol. Chem. 279, 22866–22874 (2004).

    Article  PubMed  CAS  Google Scholar 

  160. Krishnan-Schmieden, M., Konold, P. E., Kennis, J. T. M. & Pandit, A. The molecular pH-response mechanism of the plant light-stress sensor PsbS. Nat. Commun. 12, 2291 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Sacharz, J., Giovagnetti, V., Ungerer, P., Mastroianni, G. & Ruban, A. V. The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex II to control non-photochemical quenching. Nat. Plants 3, 16225 (2017).

    Article  PubMed  Google Scholar 

  162. Correa-Galvis, V., Poschmann, G., Melzer, M., Stühler, K. & Jahns, P. PsbS interactions involved in the activation of energy dissipation in Arabidopsis. Nat. Plants 2, 15225 (2016).

    Article  PubMed  CAS  Google Scholar 

  163. Wilson, S. et al. Hydrophobic mismatch in the thylakoid membrane regulates photosynthetic light harvesting. J. Am. Chem. Soc. 146, 14905–14914 (2024). This article sheds a new light on the function of the vital but enigmatic PsbS protein in photoprotection, providing evidence for its role in triggering conformational changes in LHCII through hydrophobic mismatch.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Chen, L., Rodriguez-Heredia, M., Hanke, G. T. & Ruban, A. V. Distinct features of PsbS essential for mediating plant photoprotection. Plant Commun. 6, 101179 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Ruan, M. et al. Cryo-EM structures of LHCII in photo-active and photo-protecting states reveal allosteric regulation of light harvesting and excess energy dissipation. Nat. Plants 9, 1547–1557 (2023). Structure-based explanation of the conformational photoprotective switch in LHCII trimers underlying non-photochemical quenching.

    Article  PubMed  CAS  Google Scholar 

  166. Ruban, A. V. et al. Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450, 575–578 (2007).

    Article  PubMed  CAS  Google Scholar 

  167. Ma, Y.-Z., Holt, N. E., Li, X.-P., Niyogi, K. K. & Fleming, G. R. Evidence for direct carotenoid involvement in the regulation of photosynthetic light harvesting. Proc. Natl Acad. Sci. USA 100, 4377–4382 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Holt, N. E. et al. Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307, 433–436 (2005).

    Article  PubMed  CAS  Google Scholar 

  169. Liao, P.-N., Bode, S., Wilk, L., Hafi, N. & Walla, P. J. Correlation of electronic carotenoid–chlorophyll interactions and fluorescence quenching with the aggregation of native LHCII and chlorophyll deficient mutants. Chem. Phys. 373, 50–55 (2010).

    Article  CAS  Google Scholar 

  170. Bode, S. et al. On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls. Proc. Natl Acad. Sci. USA 106, 12311–12316 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Oort, Bvan et al. Revisiting the role of xanthophylls in nonphotochemical quenching. J. Phys. Chem. Lett. 9, 346–352 (2018).

    Article  PubMed  Google Scholar 

  172. Son, M., Moya, R., Pinnola, A., Bassi, R. & Schlau-Cohen, G. S. Protein–protein interactions induce pH-dependent and zeaxanthin-independent photoprotection in the plant light-harvesting complex, LHCII. J. Am. Chem. Soc. 143, 17577–17586 (2021).

    Article  PubMed  CAS  Google Scholar 

  173. Ruban, A. V. & Murchie, E. H. Assessing the photoprotective effectiveness of non-photochemical chlorophyll fluorescence quenching: a new approach. Biochim. Biophys. Acta Bioenerg. 1817, 977–982 (2012).

    Article  CAS  Google Scholar 

  174. Theis, J. & Schroda, M. Revisiting the photosystem II repair cycle. Plant. Signal. Behav. 11, e1218587 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Aro, E.-M., Virgin, I. & Andersson, B. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim. Biophys. Acta Bioenerg. 1143, 113–134 (1993).

    Article  CAS  Google Scholar 

  176. Komenda, J., Sobotka, R. & Nixon, P. J. The biogenesis and maintenance of photosystem II: recent advances and current challenges. Plant Cell 36, 3997–4013 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Küster, L., Lücke, R., Brabender, C., Bethmann, S. & Jahns, P. The amount of zeaxanthin epoxidase but not the amount of violaxanthin de-epoxidase is a critical determinant of zeaxanthin accumulation in arabidopsis thaliana and nicotiana tabacum. Plant. Cell Physiol. 64, 1220–1230 (2023).

    Article  PubMed  Google Scholar 

  178. Kromdijk, J. et al. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354, 857–861 (2016).

    Article  PubMed  CAS  Google Scholar 

  179. Külheim, C., Ågren, J. & Jansson, S. Rapid regulation of light harvesting and plant fitness in the field. Science 297, 91–93 (2002).

    Article  PubMed  Google Scholar 

  180. Degen, G. E. & Johnson, M. P. Photosynthetic control at the cytochrome b6f complex. Plant Cell 36, 4065–4079 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Furutani, R., Wada, S., Ifuku, K., Maekawa, S. & Miyake, C. Higher reduced state of Fe/S-signals, with the suppressed oxidation of P700, causes PSI inactivation in Arabidopsis thaliana. Antioxidants 12, 21 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Tiwari, A. et al. Photodamage of iron–sulphur clusters in photosystem I induces non-photochemical energy dissipation. Nat. Plants 2, 16035 (2016).

    Article  PubMed  CAS  Google Scholar 

  183. Takagi, D., Takumi, S., Hashiguchi, M., Sejima, T. & Miyake, C. Superoxide and singlet oxygen produced within the thylakoid membranes both cause photosystem I photoinhibition. Plant. Physiol. 171, 1626–1634 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Sejima, T., Takagi, D., Fukayama, H., Makino, A. & Miyake, C. Repetitive short-pulse light mainly inactivates photosystem I in sunflower leaves. Plant. Cell Physiol. 55, 1184–1193 (2014).

    Article  PubMed  CAS  Google Scholar 

  185. Suorsa, M. et al. PROTON GRADIENT REGULATION5 is essential for proper acclimation of Arabidopsis photosystem I to naturally and artificially fluctuating light conditions. Plant. Cell 24, 2934–2948 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Lima‐Melo, Y., Gollan, P. J., Tikkanen, M., Silveira, J. A. G. & Aro, E. Consequences of photosystem‐I damage and repair on photosynthesis and carbon use in Arabidopsis thaliana. Plant. J. 97, 1061–1072 (2019).

    Article  PubMed  Google Scholar 

  187. Lempiäinen, T., Rintamäki, E., Aro, E. & Tikkanen, M. Plants acclimate to photosystem I photoinhibition by readjusting the photosynthetic machinery. Plant, Cell Env. 45, 2954–2971 (2022).

    Article  Google Scholar 

  188. Rumberg, B. & Siggel, U. pH changes in the inner phase of the thylakoids during photosynthesis. Naturwissenschaften 56, 130–132 (1969).

    Article  PubMed  CAS  Google Scholar 

  189. Yamamoto, H. & Shikanai, T. PGR5-dependent cyclic electron flow protects photosystem I under fluctuating light at donor and acceptor sides. Plant. Physiol. 179, 588–600 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Takizawa, K., Cruz, J. A., Kanazawa, A. & Kramer, D. M. The thylakoid proton motive force in vivo. Quantitative, non-invasive probes, energetics, and regulatory consequences of light-induced pmf. Biochim. Biophys. Acta Bioenerg. 1767, 1233–1244 (2007).

    Article  CAS  Google Scholar 

  191. Schöttler, M. A., Tóth, S. Z., Boulouis, A. & Kahlau, S. Photosynthetic complex stoichiometry dynamics in higher plants: biogenesis, function, and turnover of ATP synthase and the cytochrome b6f complex. J. Exp. Bot. 66, 2373–2400 (2015).

    Article  PubMed  Google Scholar 

  192. Hald, S., Nandha, B., Gallois, P. & Johnson, G. N. Feedback regulation of photosynthetic electron transport by NADP(H) redox poise. Biochim. Biophys. Acta Bioenerg. 1777, 433–440 (2008).

    Article  CAS  Google Scholar 

  193. Degen, G. E. et al. High cyclic electron transfer via the PGR5 pathway in the absence of photosynthetic control. Plant. Physiol. 192, 370–386 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Shimakawa, G., Shaku, K. & Miyake, C. Reduction-induced suppression of electron flow (RISE) is relieved by non-ATP-consuming electron flow in Synechococcus elongatus PCC 7942. Front. Microbiol. 9, 886 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Anderson, J. M. Photoregulation of the composition, function, and structure of thylakoid membranes. Annu. Rev. Plant. Physiol. 37, 93–136 (1986).

    Article  CAS  Google Scholar 

  196. Schöttler, M. A. & Tóth, S. Z. Photosynthetic complex stoichiometry dynamics in higher plants: environmental acclimation and photosynthetic flux control. Front. Plant. Sci. 5, 188 (2014).

    PubMed  PubMed Central  Google Scholar 

  197. Albanese, P. et al. Thylakoid proteome modulation in pea plants grown at different irradiances: quantitative proteomic profiling in a non‐model organism aided by transcriptomic data integration. Plant. J. 96, 786–800 (2018).

    Article  PubMed  CAS  Google Scholar 

  198. Flannery, S. E. et al. Comparative proteomics of thylakoids from Arabidopsis grown in laboratory and field conditions. Plant. Direct 5, e355 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Flannery, S. E. et al. Developmental acclimation of the thylakoid proteome to light intensity in Arabidopsis. Plant. J. 105, 223–244 (2021).

    Article  PubMed  CAS  Google Scholar 

  200. Allen, J. F., de Paula, W. B. M., Puthiyaveetil, S. & Nield, J. A structural phylogenetic map for chloroplast photosynthesis. Trends Plant. Sci. 16, 645–655 (2011).

    Article  PubMed  CAS  Google Scholar 

  201. Nickelsen, J. & Rengstl, B. Photosystem II assembly: from cyanobacteria to plants. Annu. Rev. Plant. Biol. 64, 609–635 (2013).

    Article  PubMed  CAS  Google Scholar 

  202. Komenda, J., Sobotka, R. & Nixon, P. J. Assembling and maintaining the photosystem II complex in chloroplasts and cyanobacteria. Curr. Opin. Plant. Biol. 15, 245–251 (2012).

    Article  PubMed  CAS  Google Scholar 

  203. Heinz, S., Liauw, P., Nickelsen, J. & Nowaczyk, M. Analysis of photosystem II biogenesis in cyanobacteria. Biochim. Biophys. Acta Bioenerg. 1857, 274–287 (2016).

    Article  CAS  Google Scholar 

  204. Hristou, A. et al. Ribosome-associated chloroplast SRP54 enables efficient cotranslational membrane insertion of key photosynthetic proteins. Plant. Cell 31, 2734–2750 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  205. Hennon, S. W., Soman, R., Zhu, L. & Dalbey, R. E. YidC/Alb3/Oxa1 family of insertases. J. Biol. Chem. 290, 14866–14874 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Anbudurai, P. R., Mor, T. S., Ohad, I., Shestakov, S. V. & Pakrasi, H. B. The ctpA gene encodes the C-terminal processing protease for the D1 protein of the photosystem II reaction center complex. Proc. Natl Acad. Sci. USA 91, 8082–8086 (1994).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Knoppová, J. et al. Assembly of D1/D2 complexes of photosystem II: Binding of pigments and a network of auxiliary proteins. Plant. Physiol. 189, 790–804 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Chiu, Y.-F. & Chu, H.-A. New structural and mechanistic insights into functional roles of cytochrome b559 in photosystem II. Front. Plant. Sci. 13, 914922 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Walters, R. G., Shephard, F., Rogers, J. J. M., Rolfe, S. A. & Horton, P. Identification of mutants of Arabidopsis defective in acclimation of photosynthesis to the light environment. Plant. Physiol. 131, 472–481 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Che, Y. et al. Arabidopsis PsbP-like protein 1 facilitates the assembly of the photosystem II supercomplexes and optimizes plant fitness under fluctuating light. Plant. Cell Physiol. 61, 1168–1180 (2020).

    Article  PubMed  CAS  Google Scholar 

  211. Zhao, Z. et al. The Ycf48 accessory factor occupies the site of the oxygen-evolving manganese cluster during photosystem II biogenesis. Nat. Commun. 14, 4681 (2023). Structure of a PSII intermediate including the YCF48 assembly factor, suggesting it may prevent premature binding of Mn and Ca ions, thus protecting the complex from damage.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Beck, J. et al. Small one-helix proteins are essential for photosynthesis in Arabidopsis. Front. Plant. Sci. 8, 7 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Maeda, H. et al. Characterization of photosystem II assembly complexes containing ONE-HELIX PROTEIN1 in Arabidopsis thaliana. J. Plant. Res. 135, 361–376 (2022).

    Article  PubMed  CAS  Google Scholar 

  214. Wang, F. et al. One-helix protein 2 is not required for the synthesis of photosystem II subunit D1 in Chlamydomonas. Plant. Physiol. 191, 1612–1633 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Myouga, F. et al. Stable accumulation of photosystem II requires ONE-HELIX PROTEIN1 (OHP1) of the light harvesting-like family. Plant. Physiol. 176, 2277–2291 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Hey, D. & Grimm, B. ONE-HELIX PROTEIN2 (OHP2) is required for the stability of OHP1 and assembly factor HCF244 and is functionally linked to PSII biogenesis. Plant. Physiol. 177, 1453–1472 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Boehm, M. et al. Investigating the early stages of photosystem II assembly in Synechocystis sp. PCC 6803. J. Biol. Chem. 286, 14812–14819 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Armbruster, U. et al. The Arabidopsis thylakoid protein PAM68 is required for efficient D1 biogenesis and photosystem II assembly. Plant. Cell 22, 3439–3460 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Kashino, Y. et al. Proteomic analysis of a highly active photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypeptides. Biochemistry 41, 8004–8012 (2002).

    Article  PubMed  CAS  Google Scholar 

  220. Xiao, Y. et al. Structural insights into cyanobacterial photosystem II intermediates associated with Psb28 and Tsl0063. Nat. Plants 7, 1132–1142 (2021).

    Article  PubMed  CAS  Google Scholar 

  221. Keller, J.-M. et al. Eukaryote-specific assembly factor DEAP2 mediates an early step of photosystem II assembly in Arabidopsis. Plant. Physiol. 193, 1970–1986 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Xingxing, C. et al. Crystal structure of Psb27 from Arabidopsis thaliana determined at a resolution of 1.85 Å. Photosynth. Res. 136, 139–146 (2018).

    Article  PubMed  Google Scholar 

  223. Zabret, J. et al. Structural insights into photosystem II assembly. Nat. Plants 7, 524–538 (2021). A high-resolution structure of a PSII assembly intermediate, with photoprotective roles identified for key assembly factors.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Huang, G. et al. Structural insights into a dimeric Psb27-photosystem II complex from a cyanobacterium Thermosynechococcus vulcanus. Proc. Natl Acad. Sci. USA 118, e2018053118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Johnson, V. M., Biswas, S., Roose, J. L., Pakrasi, H. B. & Liu, H. Psb27, a photosystem II assembly protein, enables quenching of excess light energy during its participation in the PSII lifecycle. Photosynth. Res. 152, 297–304 (2022).

    Article  PubMed  CAS  Google Scholar 

  226. Zhao, Y., Deng, L., Last, R. L., Hua, W. & Liu, J. Psb28 protein is indispensable for stable accumulation of PSII core complexes in Arabidopsis. Plant. J. 119, 1226–1238 (2024).

    Article  PubMed  CAS  Google Scholar 

  227. Kley, J. et al. Structural adaptation of the plant protease Deg1 to repair photosystem II during light exposure. Nat. Struct. Mol. Biol. 18, 728–731 (2011).

    Article  PubMed  CAS  Google Scholar 

  228. Karamoko, M., Cline, S., Redding, K., Ruiz, N. & Hamel, P. P. Lumen Thiol Oxidoreductase1, a disulfide bond-forming catalyst, is required for the assembly of photosystem II in Arabidopsis. Plant. Cell 23, 4462–4475 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Lima, A. et al. A redox-active FKBP-type immunophilin functions in accumulation of the photosystem II supercomplex in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 103, 12631–12636 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. Fu, A. et al. A chloroplast cyclophilin functions in the assembly and maintenance of photosystem II in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 104, 15947–15952 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Gould, S. B., Waller, R. F. & McFadden, G. I. Plastid evolution. Annu. Rev. Plant. Biol. 59, 491–517 (2008).

    Article  PubMed  CAS  Google Scholar 

  232. Moore, M., Harrison, M. S., Peterson, E. C. & Henry, R. Chloroplast Oxa1p homolog albino3 is required for post-translational integration of the light harvesting chlorophyll-binding protein into thylakoid membranes. J. Biol. Chem. 275, 1529–1532 (2000).

    Article  PubMed  CAS  Google Scholar 

  233. Sun, X. et al. The thylakoid protease Deg1 is involved in photosystem‐II assembly in Arabidopsis thaliana. Plant. J. 62, 240–249 (2010).

    Article  PubMed  CAS  Google Scholar 

  234. Li, L. et al. Protein degradation rate in Arabidopsis thaliana leaf growth and development. Plant. Cell 29, 207–228 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Kato, Y. et al. Characterization of tryptophan oxidation affecting D1 degradation by FtsH in the photosystem II quality control of chloroplasts. eLife 12, RP88822 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Tikkanen, M., Nurmi, M., Kangasjärvi, S. & Aro, E.-M. Core protein phosphorylation facilitates the repair of photodamaged photosystem II at high light. Biochim. Biophys. Acta Bioenerg. 1777, 1432–1437 (2008).

    Article  CAS  Google Scholar 

  237. Goral, T. K. et al. Visualizing the mobility and distribution of chlorophyll proteins in higher plant thylakoid membranes: effects of photoinhibition and protein phosphorylation. Plant. J. 62, 948–959 (2010).

    PubMed  CAS  Google Scholar 

  238. Puthiyaveetil, S. et al. Significance of the photosystem II core phosphatase PBCP for plant viability and protein repair in thylakoid membranes. Plant. Cell Physiol. 55, 1245–1254 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Huang, W. et al. Arabidopsis thylakoid formation 1 is a critical regulator for dynamics of PSII–LHCII complexes in leaf senescence and excess light. Mol. Plant. 6, 1673–1691 (2013).

    Article  PubMed  CAS  Google Scholar 

  240. Li, A. et al. Structural basis for an early stage of the photosystem II repair cycle in Chlamydomonas reinhardtii. Nat. Commun. 15, 5211 (2024). A high-resolution structure of a PSII repair complex detailing the roles of the proteins in the disassembly of the oxygen evolving complex and peripheral antenna.

    Article  PubMed  PubMed Central  Google Scholar 

  241. Samol, I. et al. Identification of a photosystem II phosphatase involved in light acclimation in Arabidopsis. Plant. Cell 24, 2596–2609 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. Jin, H. et al. Hypersensitive to high light1 interacts with low quantum yield of photosystem II1 and functions in protection of photosystem II from photodamage in arabidopsis. Plant. Cell 26, 1213–1229 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Malnoë, A., Wang, F., Girard-Bascou, J., Wollman, F.-A. & Vitry, C. de. Thylakoid FtsH protease contributes to photosystem II and cytochrome b6f remodeling in Chlamydomonas reinhardtii under stress conditions. Plant. Cell 26, 373–390 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Sun, X. et al. Formation of DEG5 and DEG8 complexes and their involvement in the degradation of photodamaged photosystem II reaction center D1 protein in arabidopsis. Plant. Cell 19, 1347–1361 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  245. Fu, W. et al. Immunophilin CYN28 is required for accumulation of photosystem II and thylakoid FtsH protease in Chlamydomonas. Plant. Physiol. 191, 1002–1016 (2022).

    Article  PubMed Central  Google Scholar 

  246. Bec̆ková, M. et al. Structure of Psb29/Thf1 and its association with the FtsH protease complex involved in photosystem II repair in cyanobacteria. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160394 (2017).

    Article  Google Scholar 

  247. Sakamoto, W. Protein degradation machineries in plastids. Annu. Rev. Plant. Biol. 57, 599–621 (2006).

    Article  PubMed  CAS  Google Scholar 

  248. Walter, B., Hristou, A., Nowaczyk, M. M. & Schünemann, D. In vitro reconstitution of co-translational D1 insertion reveals a role of the cpSec–Alb3 translocase and Vipp1 in photosystem II biogenesis. Biochem. J. 468, 315–324 (2015).

    Article  PubMed  CAS  Google Scholar 

  249. Fristedt, R., Williams-Carrier, R., Merchant, S. S. & Barkan, A. A thylakoid membrane protein harboring a DnaJ-type zinc finger domain is required for photosystem I accumulation in plants. J. Biol. Chem. 289, 30657–30667 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  250. Króliczewski, J., Piskozub, M., Bartoszewski, R. & Króliczewska, B. ALB3 insertase mediates cytochrome b6 co-translational import into the thylakoid membrane. Sci. Rep. 6, 34557 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Króliczewski, J., Bartoszewski, R. & Króliczewska, B. Chloroplast PetD protein: evidence for SRP/Alb3-dependent insertion into the thylakoid membrane. BMC Plant. Biol. 17, 213 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Xiao, J. et al. DAC is involved in the accumulation of the cytochrome b6/f complex in arabidopsis. Plant. Physiol. 160, 1911–1922 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  253. Heinnickel, M. L. et al. Novel thylakoid membrane greencut protein CPLD38 impacts accumulation of the cytochrome b6f complex and associated regulatory processes.J. Biol. Chem. 288, 7024–7036 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  254. Wittkopp, T. M. et al. GreenCut protein CPLD49 of Chlamydomonas reinhardtii associates with thylakoid membranes and is required for cytochrome b6f complex accumulation. Plant. J. 94, 1023–1037 (2018).

    Article  PubMed  CAS  Google Scholar 

  255. Saint-Marcoux, D., Wollman, F.-A. & de Vitry, C. Biogenesis of cytochrome b6 in photosynthetic membranes. J. Cell Biol. 185, 1195–1207 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  256. Voelker, R. & Barkan, A. Two nuclear mutations disrupt distinct pathways for targeting proteins to the chloroplast thylakoid. EMBO J. 14, 3905–3914 (1995).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  257. Röhl, T. & van Wijk, K. J. In vitro reconstitution of insertion and processing of cytochrome f in a homologous chloroplast translation system. J. Biol. Chem. 276, 35465–35472 (2001).

    Article  PubMed  Google Scholar 

  258. Lennartz, K. HCF164 encodes a thioredoxin-like protein involved in the biogenesis of the cytochrome b6f complex in Arabidopsis. Plant. Cell Online 13, 2539–2551 (2001).

    Article  CAS  Google Scholar 

  259. Karamoko, M., Gabilly, S. T. & Hamel, P. P. Operation of trans-thylakoid thiol-metabolizing pathways in photosynthesis. Front. Plant. Sci. 4, 476 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Xie, Z. & Merchant, S. The plastid-encoded ccsA gene is required for heme attachment to chloroplast c-type cytochromes. J. Biol. Chem. 271, 4632–4639 (1996).

    Article  PubMed  CAS  Google Scholar 

  261. Inoue, K. et al. Ccs1, a nuclear gene required for the post-translational assembly of chloroplast c-type cytochromes. J. Biol. Chem. 272, 31747–31754 (1997).

    Article  PubMed  CAS  Google Scholar 

  262. Dreyfuss, B. W., Hamel, P. P., Nakamoto, S. S. & Merchant, S. Functional analysis of a divergent system II protein, Ccs1, involved in c-type cytochrome biogenesis. J. Biol. Chem. 278, 2604–2613 (2002).

    Article  PubMed  Google Scholar 

  263. Molik, S., Karnauchov, I., Weidlich, C., Herrmann, R. G. & Klösgen, R. B. The Rieske Fe/S protein of the cytochrome b6/f complex in chloroplasts missing link in the evolution of protein transport pathways in chloroplasts? J. Biol. Chem. 276, 42761–42766 (2001).

    Article  PubMed  CAS  Google Scholar 

  264. Sandoval-Ibáñez, O. et al. De-etiolation-induced protein 1 (DEIP1) mediates assembly of the cytochrome b6f complex in Arabidopsis. Nat. Commun. 13, 4045 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Li, N. et al. The thylakoid membrane protein NTA1 is an assembly factor of the cytochrome b6f complex essential for chloroplast development in Arabidopsis. Plant. Commun. 4, 100509 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Penzler, J.-F. et al. A pgr5 suppressor screen uncovers two distinct suppression mechanisms and links cytochrome b6f complex stability to PGR5. Plant. Cell 36, 4245–4266 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  267. Rolo, D., Schöttler, M. A., Sandoval-Ibáñez, O. & Bock, R. Structure, function, and assembly of photosystem I in thylakoid membranes of vascular plants. Plant Cell 36, 4080-4108 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  268. Wittenberg, G. et al. Identification and characterization of a stable intermediate in photosystem I assembly in tobacco. Plant. J. 90, 478–490 (2017).

    Article  PubMed  CAS  Google Scholar 

  269. Göhre, V., Ossenbühl, F., Crèvecoeur, M., Eichacker, L. A. & Rochaix, J.-D. One of two Alb3 proteins is essential for the assembly of the photosystems and for cell survival in Chlamydomonas. Plant. Cell 18, 1454–1466 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  270. Rolo, D. et al. Co-expressed with PSI assembly1 (CEPA1) is a photosystem I assembly factor in Arabidopsis. Plant Cell 36, 4179–4211 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  271. Nellaepalli, S., Kim, R. G., Grossman, A. R. & Takahashi, Y. Interplay of four auxiliary factors is required for the assembly of photosystem I reaction center subcomplex. Plant. J. 106, 1075–1086 (2021).

    Article  PubMed  CAS  Google Scholar 

  272. Nellaepalli, S., Ozawa, S.-I., Kuroda, H. & Takahashi, Y. The photosystem I assembly apparatus consisting of Ycf3–Y3IP1 and Ycf4 modules. Nat. Commun. 9, 2439 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  273. Gao, H. et al. Arabidopsis thaliana Nfu2 accommodates [2Fe-2S] or [4Fe-4S] clusters and is competent for in vitro maturation of chloroplast [2Fe-2S] and [4Fe-4S] cluster-containing proteins. Biochemistry 52, 6633–6645 (2013).

    Article  PubMed  CAS  Google Scholar 

  274. Nath, K., O’Donnell, J. P. & Lu, Y. Chloroplastic iron-sulfur scaffold protein NFU3 is essential to overall plant fitness. Plant. Signal. Behav. 12, e1282023 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Schwenkert, S. et al. Chloroplast HCF101 is a scaffold protein for [4Fe-4S] cluster assembly. Biochem. J. 425, 207–214 (2010).

    Article  CAS  Google Scholar 

  276. Roland, M. et al. The plastidial Arabidopsis thaliana NFU1 protein binds and delivers [4Fe-4S] clusters to specific client proteins.J. Biol. Chem. 295, 1727–1742 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  277. Heinnickel, M. et al. Tetratricopeptide repeat protein protects photosystem I from oxidative disruption during assembly. Proc. Natl Acad. Sci. USA 113, 2774–2779 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  278. Roose, J. L., Frankel, L. K. & Bricker, T. M. The PsbP domain protein 1 functions in the assembly of lumenal domains in photosystem I. J. Biol. Chem. 289, 23776–23785 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  279. Ozawa, S., Onishi, T. & Takahashi, Y. Identification and characterization of an assembly intermediate subcomplex of photosystem I in the green alga Chlamydomonas reinhardtii. J. Biol. Chem. 285, 20072–20079 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  280. Yang, H. et al. Tetratricopeptide repeat protein Pyg7 is essential for photosystem I assembly by interacting with PsaC in Arabidopsis. Plant. J. 91, 950–961 (2017).

    Article  PubMed  CAS  Google Scholar 

  281. Liu, J. et al. PSBP-DOMAIN PROTEIN1, a nuclear-encoded thylakoid lumenal protein, is essential for photosystem I assembly in Arabidopsis. Plant. Cell 24, 4992–5006 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  282. Zhang, A. et al. Uncovering the photosystem I assembly pathway in land plants. Nat. Plants 10, 645–660 (2024).

    Article  PubMed  CAS  Google Scholar 

  283. Caspy, I., Borovikova-Sheinker, A., Klaiman, D., Shkolnisky, Y. & Nelson, N. The structure of a triple complex of plant photosystem I with ferredoxin and plastocyanin. Nat. Plants 6, 1300–1305 (2020).

    Article  PubMed  CAS  Google Scholar 

  284. Dünschede, B. et al. Chloroplast SRP54 was recruited for posttranslational protein transport via complex formation with chloroplast SRP43 during land plant evolution.J. Biol. Chem. 290, 13104–13114 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  285. Rathod, M. K. et al. Assembly apparatus of light-harvesting complexes: identification of Alb3.1–cpSRP–LHCP complexes in the green alga Chlamydomonas reinhardtii. Plant. Cell Physiol. 63, 70–81 (2021).

    Article  Google Scholar 

  286. Wu, J. et al. Regulatory dynamics of the higher-plant PSI–LHCI supercomplex during state transitions. Mol. Plant. 16, 1937–1950 (2023).

    Article  PubMed  CAS  Google Scholar 

  287. Rühle, T., Leister, D. & Pasch, V. Chloroplast ATP synthase: from structure to engineering. Plant Cell 36, 3974–3996 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  288. Pasch, J. C., Nickelsen, J. & Schünemann, D. The yeast split-ubiquitin system to study chloroplast membrane protein interactions. Appl. Microbiol. Biotechnol. 69, 440–447 (2005).

    Article  PubMed  CAS  Google Scholar 

  289. Rühle, T. et al. The Arabidopsis protein conserved only in the green lineage 160 promotes the assembly of the membranous part of the chloroplast ATP synthase. Plant. Physiol. 165, 207–226 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  290. Fristedt, R. et al. The thylakoid membrane protein CGL160 supports CF1CF0 ATP synthase accumulation in Aarabidopsis thaliana. PLoS ONE 10, e0121658 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  291. Zhang, L. et al. Nucleus-encoded protein BFA1 promotes efficient assembly of the chloroplast ATP synthase coupling factor 1. Plant. Cell 30, 1770–1788 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  292. Grahl, S. et al. The Arabidopsis protein CGLD11 is required for chloroplast ATP synthase accumulation. Mol. Plant. 9, 885–899 (2016).

    Article  PubMed  CAS  Google Scholar 

  293. Zhang, L., Duan, Z., Zhang, J. & Peng, L. Biogenesis factor required for ATP synthase 3 facilitates assembly of the chloroplast ATP synthase complex. Plant. Physiol. 171, 1291–1306 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  294. Mao, J. et al. PAB is an assembly chaperone that functions downstream of chaperonin 60 in the assembly of chloroplast ATP synthase coupling factor 1. Proc. Natl Acad. Sci. USA 112, 4152–4157 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  295. Reiter, B. et al. CGL160-mediated recruitment of the coupling factor CF1 is required for efficient thylakoid ATP synthase assembly, photosynthesis, and chloroplast development in Arabidopsis. Plant. Cell 35, 488–509 (2022).

    Article  PubMed Central  Google Scholar 

  296. Eckardt, N. A. et al. Lighting the way: compelling open questions in photosynthesis research. Plant. Cell 36, 3914–3943 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  297. Croce, R. et al. Perspectives on improving photosynthesis to increase crop yield. Plant Cell 36, 3944–3973 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  298. Ort, D. R. et al. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc. Natl Acad. Sci. USA 112, 8529–8536 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  299. South, P. F., Cavanagh, A. P., Liu, H. W. & Ort, D. R. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science. 363, eaat9077 (2019).

    Article  PubMed  CAS  Google Scholar 

  300. Ermakova, M., Lopez-Calcagno, P. E., Raines, C. A., Furbank, R. T. & Caemmerer, S. von. Overexpression of the rieske FeS protein of the cytochrome b6f complex increases C4 photosynthesis in Setaria viridis. Commun. Biol. 2, 314 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  301. López-Calcagno, P. E. et al. Stimulating photosynthetic processes increases productivity and water-use efficiency in the field. Nat. Plants 6, 1054–1063 (2020).

    Article  PubMed  Google Scholar 

  302. Munekage, Y. et al. Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429, 579–582 (2004).

    Article  PubMed  CAS  Google Scholar 

  303. Labs, M., Rühle, T. & Leister, D. The antimycin A-sensitive pathway of cyclic electron flow: from 1963 to 2015. Photosynth. Res. 129, 231–238 (2016).

    Article  PubMed  CAS  Google Scholar 

  304. Strand, D. D., Fisher, N., Davis, G. A. & Kramer, D. M. Redox regulation of the antimycin A sensitive pathway of cyclic electron flow around photosystem I in higher plant thylakoids. Biochim. Biophys. Acta Bioenerg. 1857, 1–6 (2016).

    Article  CAS  Google Scholar 

  305. Nakano, H., Yamamoto, H. & Shikanai, T. Contribution of NDH-dependent cyclic electron transport around photosystem I to the generation of proton motive force in the weak mutant allele of pgr5. Biochim. Biophys. Acta Bioenerg. 1860, 369–374 (2019).

    Article  PubMed  CAS  Google Scholar 

  306. Hosler, J. P. & Yocum, C. F. Regulation of cyclic photophosphorylation during ferredoxin-mediated electron transport effect of DCMU and the NADPH/NADP+ ratio. Plant. Physiol. 83, 965–969 (1987).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  307. Hertle, A. P. et al. PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow. Mol. Cell 49, 511–523 (2013).

    Article  PubMed  CAS  Google Scholar 

  308. DalCorso, G. et al. A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 132, 273–285 (2008).

    Article  PubMed  CAS  Google Scholar 

  309. Rühle, T. et al. PGRL2 triggers degradation of PGR5 in the absence of PGRL1. Nat. Commun. 12, 3941 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  310. Buchert, F., Mosebach, L., Gäbelein, P. & Hippler, M. PGR5 is required for efficient Q cycle in the cytochrome b6f complex during cyclic electron flow. Biochem. J. 477, 1631–1650 (2020).

    Article  PubMed  CAS  Google Scholar 

  311. Emrich-Mills, T. Z. et al. Tethering ferredoxin-NADP+ reductase to photosystem I promotes photosynthetic cyclic electron transfer. Plant Cell https://doi.org/10.1093/plcell/koaf042 (2025).

  312. Peltier, G., Aro, E.-M. & Shikanai, T. NDH-1 and NDH-2 plastoquinone reductases in oxygenic photosynthesis. Annu. Rev. Plant. Biol. 67, 1–26 (2014).

    Google Scholar 

  313. Pribil, M., Labs, M. & Leister, D. Structure and dynamics of thylakoids in land plants. J. Exp. Bot. 65, 1955–1972 (2014).

    Article  PubMed  CAS  Google Scholar 

  314. Otani, T., Kato, Y. & Shikanai, T. Specific substitutions of light‐harvesting complex I proteins associated with photosystem I are required for supercomplex formation with chloroplast NADH dehydrogenase‐like complex. Plant. J. 94, 122–130 (2018).

    Article  PubMed  CAS  Google Scholar 

  315. Schuller, J. M. et al. Structural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer. Science 363, 257–260 (2019).

    Article  PubMed  CAS  Google Scholar 

  316. Zhang, C. et al. Structural insights into NDH-1 mediated cyclic electron transfer. Nat. Commun. 11, 888 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  317. Laughlin, T. G., Bayne, A. N., Trempe, J.-F., Savage, D. F. & Davies, K. M. Structure of the complex I-like molecule NDH of oxygenic photosynthesis. Nature 566, 411–414 (2019).

    Article  PubMed  Google Scholar 

  318. Richardson, K. H. et al. Functional basis of electron transport within photosynthetic complex I. Nat. Commun. 12, 5387 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  319. Pan, X. et al. Structural basis for electron transport mechanism of complex I-like photosynthetic NAD(P)H dehydrogenase. Nat. Commun. 11, 610 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  320. Strand, D. D., Fisher, N. & Kramer, D. M. The higher plant plastid NAD(P)H dehydrogenase-like complex (NDH) is a high efficiency proton pump that increases ATP production by cyclic electron flow. J. Biol. Chem. 292, 11850–11860 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  321. Kampjut, D. & Sazanov, L. A. The coupling mechanism of mammalian respiratory complex I. Science 370, eabc4209 (2020).

    Article  PubMed  CAS  Google Scholar 

  322. Kubicki, A., Funk, E., Westhoff, P. & Steinmüller, K. Differential expression of plastome-encoded ndh genes in mesophyll and bundle-sheath chloroplasts of the C4 plant Sorghum bicolor indicates that the complex I-homologous NAD(P)H-plastoquinone oxidoreductase is involved in cyclic electron transport. Planta 199, 276–281 (1996).

    Article  CAS  Google Scholar 

  323. Takabayashi, A., Kishine, M., Asada, K., Endo, T. & Sato, F. Differential use of two cyclic electron flows around photosystem I for driving CO2-concentration mechanism in C4 photosynthesis. Proc. Natl Acad. Sci. USA 102, 16898–16903 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  324. Majeran, W. et al. Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. Mol. Cell. Proteom. 7, 1609–1638 (2008).

    Article  CAS  Google Scholar 

  325. Ermakova, M. et al. Chloroplast NADH dehydrogenase‐like complex‐mediated cyclic electron flow is the main electron transport route in C4 bundle sheath cells. N. Phytol. 243, 2187–2200 (2024).

    Article  CAS  Google Scholar 

  326. Junge, W. Oxygenic photosynthesis: history, status and perspective. Q. Rev. Biophys. 52, e1 (2019).

    Article  PubMed  Google Scholar 

  327. Kok, B., Forbush, B. & McGloin, M. Cooperation of charges in photosynthetic O2 evolution–I. A linear four step mechanism. Photochem. Photobiol. 11, 457–475 (1970).

    Article  PubMed  CAS  Google Scholar 

  328. Joliot, P., Barbieri, G. & Chabaud, R. Un nouveau modele des centres photochimiques du systeme II. Photochem. Photobiol. 10, 309–329 (1969).

    Article  CAS  Google Scholar 

  329. Klauss, A., Haumann, M. & Dau, H. Alternating electron and proton transfer steps in photosynthetic water oxidation. Proc. Natl Acad. Sci. USA 109, 16035–16040 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  330. Kern, J. et al. Structures of the intermediates of Kok’s photosynthetic water oxidation clock. Nature 563, 421–425 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  331. Kato, K. et al. High-resolution cryo-EM structure of photosystem II reveals damage from high-dose electron beams. Commun. Biol. 4, 382 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  332. Ibrahim, M. et al. Untangling the sequence of events during the S2 → S3 transition in photosystem II and implications for the water oxidation mechanism. Proc. Natl Acad. Sci. USA 117, 12624–12635 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  333. Young, I. D. et al. Structure of photosystem II and substrate binding at room temperature. Nature 540, 453–457 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  334. Kern, J. et al. Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature. Science 340, 491–495 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  335. Suga, M. et al. An oxyl/oxo mechanism for oxygen-oxygen coupling in PSII revealed by an X-ray free-electron laser. Science 366, 334–338 (2019).

    Article  PubMed  CAS  Google Scholar 

  336. Suga, M. et al. Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL. Nature 543, 131–135 (2017).

    Article  PubMed  CAS  Google Scholar 

  337. Bhowmick, A. et al. Structural evidence for intermediates during O2 formation in photosystem II. Nature 617, 629–636 (2023). Serial femtosecond crystallography using XFELs to probe structural changes at the active site of the enzyme, finally shedding light on the S3-to-S4-to-S0 transition of the oxygen evolving complex.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  338. Dau, H. et al. The electron-proton bottleneck of photosynthetic oxygen evolution. Nature 617, 623–628 (2022).

    Google Scholar 

  339. Siegbahn, P. E. M. Structures and energetics for O2 formation in photosystem II. Acc. Chem. Res. 42, 1871–1880 (2009).

    Article  PubMed  CAS  Google Scholar 

  340. de Lichtenberg, C. et al. Assignment of the slowly exchanging substrate water of nature’s water-splitting cofactor. Proc. Natl Acad. Sci. USA 121, e2319374121 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.P.J. acknowledges funding from the Leverhulme Trust grants RPG-2019-045 and RPG-2021-345 and Biotechnology and Biological Sciences Research Council (BBSRC) UK grants BB/V006630/1 and BB/W015269/1. M.P.J. would also like to thank B. Engel and W. Wietrzynski for collaboration in producing the spinach chloroplast tomograms, and A. Ruban, B. Rutherford, P. Nixon, N. Hunter and A. Hitchcock for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew P. Johnson.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Johannes Messinger, Mei Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

C4 type photosynthesis

This is a more efficient type of photosynthesis that concentrates carbon dioxide around the enzyme Rubisco.

Jablonski diagram

A diagram that illustrates the electronic states and often the vibrational levels of a molecule.

Serial femtosecond crystallography

A form of X-ray crystallography developed for use at X-ray free electron lasers (XFELs). Diffraction patterns from sub-micrometre crystals can be generated via single pulses of XFELs. However, the pulses are so intense that the crystals are destroyed, meaning data must be collected from many crystals in series.

Signal recognition particle pathway

A cellular mechanism that directs nascent proteins with a signal sequence to the chloroplast thylakoid membrane by binding to the signal sequence as it emerges from the ribosome and then docking the ribosome-nascent chain complex with the thylakoid membrane through a receptor, allowing for co-translational protein targeting and translocation across the membrane.

Twin-arginine translocation pathway

A protein transport system that moves folded proteins across the thylakoid membrane.

X-ray free electron lasers

This approach combines the properties of X-ray sources with the properties of lasers, utilized for obtaining high-resolution structural and chemical information on isolated molecules.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, M.P. Structure, regulation and assembly of the photosynthetic electron transport chain. Nat Rev Mol Cell Biol 26, 667–690 (2025). https://doi.org/10.1038/s41580-025-00847-y

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41580-025-00847-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载