+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genomics of schizophrenia, bipolar disorder and major depressive disorder

Abstract

Schizophrenia, bipolar disorder and major depressive disorder — which are the most common adult disorders requiring psychiatric care — contribute substantially to premature mortality and morbidity globally. Treatments for these disorders are suboptimal, there are no diagnostic pathologies or biomarkers and their pathophysiologies are poorly understood. Novel therapeutic and diagnostic approaches are thus badly needed. Given the high heritability of psychiatric disorders, psychiatry has potentially much to gain from the application of genomics to identify molecular risk mechanisms and to improve diagnosis. Recent large-scale, genome-wide association studies and sequencing studies, together with advances in functional genomics, have begun to illuminate the genetic architectures of schizophrenia, bipolar disorder and major depressive disorder and to identify potential biological mechanisms. Genomic findings also point to the aetiological relationships between different diagnoses and to the relationships between adult psychiatric disorders and childhood neurodevelopmental conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of genomic findings for schizophrenia, bipolar disorder and depression.
Fig. 2: Genetic correlations and impact of minimal phenotyping, and the neurodevelopmental continuum and gradient.
Fig. 3: Neuroanatomical and cellular enrichment of common variant liability to schizophrenia based on gene expression specificity.

Similar content being viewed by others

References

  1. Arias, D., Saxena, S. & Verguet, S. Quantifying the global burden of mental disorders and their economic value. EClinicalMedicine 54, 101675 (2022).

    PubMed  PubMed Central  Google Scholar 

  2. GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 9, 137–150 (2022).

    PubMed Central  Google Scholar 

  3. Kendler, K. S. The prehistory of psychiatric genetics: 1780–1910. Am. J. Psychiatry 178, 490–508 (2021).

    PubMed  Google Scholar 

  4. Sullivan, P. F., Daly, M. J. & O’Donovan, M. Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat. Rev. Genet. 13, 537–551 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Brainstorm Consortium. Analysis of shared heritability in common disorders of the brain. Science 360, eaap8757 (2018).

    Google Scholar 

  6. Sullivan, P. F., Yao, S. & Hjerling-Leffler, J. Schizophrenia genomics: genetic complexity and functional insights. Nat. Rev. Neurosci. 25, 611–624 (2024).

    PubMed  CAS  Google Scholar 

  7. Owen, M. J., Legge, S. E., Rees, E., Walters, J. T. R. & O’Donovan, M. C. Genomic findings in schizophrenia and their implications. Mol. Psychiatry 28, 3638–3647 (2023).

    PubMed  PubMed Central  Google Scholar 

  8. Gordovez, F. J. A. & McMahon, F. J. The genetics of bipolar disorder. Mol. Psychiatry 25, 544–559 (2020).

    PubMed  Google Scholar 

  9. McIntosh, A. M., Sullivan, P. F. & Lewis, C. M. Uncovering the genetic architecture of major depression. Neuron 102, 91–103 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Giangrande, E. J., Weber, R. S. & Turkheimer, E. What do we know about the genetic architecture of psychopathology? Annu. Rev. Clin. Psychol. 18, 19–42 (2022).

    PubMed  Google Scholar 

  11. Andreassen, O. A., Hindley, G. F. L., Frei, O. & Smeland, O. B. New insights from the last decade of research in psychiatric genetics: discoveries, challenges and clinical implications. World Psychiatry 22, 4–24 (2023).

    PubMed  PubMed Central  Google Scholar 

  12. Howes, O. D. & Murray, R. M. Schizophrenia: an integrated sociodevelopmental-cognitive model. Lancet 383, 1677–1687 (2014).

    PubMed  Google Scholar 

  13. Weinberger, D. R. Implications of normal brain development for the pathogenesis of schizophrenia. Arch. Gen. Psychiatry 44, 660–669 (1987).

    PubMed  CAS  Google Scholar 

  14. Murray, R. M. & Lewis, S. W. Is schizophrenia a neurodevelopmental disorder? Br. Med. J. 295, 681–682 (1987).

    CAS  Google Scholar 

  15. Craddock, N. & Owen, M. J. The Kraepelinian dichotomy — going, going… but still not gone. Br. J. Psychiatry 196, 92–95 (2010).

    PubMed  PubMed Central  Google Scholar 

  16. Owen, M. J. & O’Donovan, M. C. Schizophrenia and the neurodevelopmental continuum: evidence from genomics. World Psychiatry 16, 227–235 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. van Erp, T. G. M. et al. Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the enhancing neuro imaging genetics through meta analysis (ENIGMA) consortium. Biol. Psychiatry 84, 644–654 (2018).

    PubMed  PubMed Central  Google Scholar 

  18. van Erp, T. G. et al. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol. Psychiatry 21, 547–553 (2016).

    PubMed  Google Scholar 

  19. Hibar, D. P. et al. Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group. Mol. Psychiatry 23, 932–942 (2018).

    PubMed  CAS  Google Scholar 

  20. Hibar, D. P. et al. Subcortical volumetric abnormalities in bipolar disorder. Mol. Psychiatry 21, 1710–1716 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Schmaal, L. et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol. Psychiatry 22, 900–909 (2017).

    PubMed  CAS  Google Scholar 

  22. Schmaal, L. et al. Subcortical brain alterations in major depressive disorder: findings from the ENIGMA major depressive disorder working group. Mol. Psychiatry 21, 806–812 (2016).

    PubMed  CAS  Google Scholar 

  23. Cheon, E. J. et al. Cross disorder comparisons of brain structure in schizophrenia, bipolar disorder, major depressive disorder, and 22q11.2 deletion syndrome: a review of ENIGMA findings. Psychiatry Clin. Neurosci. 76, 140–161 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Wray, N. R. & Gottesman, I. I. Using summary data from the Danish national registers to estimate heritabilities for schizophrenia, bipolar disorder, and major depressive disorder. Front. Genet. 3, 118 (2012).

    PubMed  PubMed Central  Google Scholar 

  25. Lichtenstein, P. et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 373, 234–239 (2009).

    PubMed  CAS  Google Scholar 

  26. Cardno, A. G. & Owen, M. J. Genetic relationships between schizophrenia, bipolar disorder, and schizoaffective disorder. Schizophr. Bull. 40, 504–515 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. McGuffin, P. et al. The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch. Gen. Psychiatry 60, 497–502 (2003).

    PubMed  Google Scholar 

  28. O’Connor, L. J. et al. Extreme polygenicity of complex traits is explained by negative selection. Am. J. Hum. Genet. 105, 456–476 (2019).

    PubMed  PubMed Central  Google Scholar 

  29. Mullins, N. et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat. Genet. 53, 817–829 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Zhang, Y., Qi, G., Park, J. H. & Chatterjee, N. Estimation of complex effect-size distributions using summary-level statistics from genome-wide association studies across 32 complex traits. Nat. Genet. 50, 1318–1326 (2018).

    PubMed  CAS  Google Scholar 

  31. Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502–508 (2022). This is the largest GWAS of schizophrenia to have been reported so far; 120 genes are prioritized as candidates for mediating associations.

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Wray, N. R. et al. Genome-wide association study of major depressive disorder: new results, meta-analysis, and lessons learned. Mol. Psychiatry 17, 36–48 (2012).

    PubMed  CAS  Google Scholar 

  33. Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium. Trans-ancestry genome-wide study of depression identifies 697 associations implicating cell types and pharmacotherapies. Cell 188, 640–652.e9 (2025). This is the largest GWAS of depression to have been reported so far; 308 genes are prioritized as candidates for mediating associations.

    PubMed Central  Google Scholar 

  34. Flint, J. The genetic basis of major depressive disorder. Mol. Psychiatry 28, 2254–2265 (2023). This review covers genomic studies of depression and the limitations of minimal phenotyping for identifying MDD-associated genes.

    PubMed  PubMed Central  Google Scholar 

  35. Mitchell, B. L. et al. Polygenic risk scores derived from varying definitions of depression and risk of depression. JAMA Psychiatry 78, 1152–1160 (2021).

    PubMed  PubMed Central  Google Scholar 

  36. O’Connell, K. S. et al. Genomics yields biological and phenotypic insights into bipolar disorder. Nature 639, 968–975 (2025). This large, multi-ancestry GWAS of bipolar disorder prioritizes 36 genes as candidates for mediating risk and reports differences in genetic architecture depending on the depth of clinical phenotyping and the subtype of bipolar disorder.

    PubMed  PubMed Central  Google Scholar 

  37. Murphy, K. C., Jones, L. A. & Owen, M. J. High rates of schizophrenia in adults with velo-cardio-facial syndrome. Arch. Gen. Psychiatry 56, 940–945 (1999).

    PubMed  CAS  Google Scholar 

  38. Rees, E. et al. Analysis of intellectual disability copy number variants for association with schizophrenia. JAMA Psychiatry 73, 963–969 (2016).

    PubMed  PubMed Central  Google Scholar 

  39. Marshall, C. R. et al. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat. Genet. 49, 27–35 (2017). This large, CNV study of schizophrenia finds global enrichment of CNV burden and provides evidence to support eight risk loci at genome-wide significance.

    PubMed  CAS  Google Scholar 

  40. Rees, E. et al. Evidence that duplications of 22q11.2 protect against schizophrenia. Mol. Psychiatry 19, 37–40 (2014).

    PubMed  CAS  Google Scholar 

  41. Li, Z. et al. Genome-wide analysis of the role of copy number variation in schizophrenia risk in Chinese. Biol. Psychiatry 80, 331–337 (2016).

    PubMed  Google Scholar 

  42. Georgieva, L. et al. De novo CNVs in bipolar affective disorder and schizophrenia. Hum. Mol. Genet. 23, 6677–6683 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Charney, A. W. et al. Contribution of rare copy number variants to bipolar disorder risk is limited to schizoaffective cases. Biol. Psychiatry 86, 110–119 (2019).

    PubMed  CAS  Google Scholar 

  44. Kendall, K. M. et al. Association of rare copy number variants with risk of depression. JAMA Psychiatry 76, 818–825 (2019).

    PubMed  PubMed Central  Google Scholar 

  45. Birnbaum, R., Mahjani, B., Loos, R. J. F. & Sharp, A. J. Clinical characterization of copy number variants associated with neurodevelopmental disorders in a large-scale multiancestry biobank. JAMA Psychiatry 79, 250–259 (2022).

    PubMed  Google Scholar 

  46. Fromer, M. et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 506, 179–184 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Purcell, S. M. et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 506, 185–190 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Singh, T. et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature 604, 509–516 (2022). This is the largest exome-sequencing study of schizophrenia reported so far; it implicates ten genes in which disruptive, rare coding variants confer substantial risk at exome-wide significance.

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Liu, D. et al. Schizophrenia risk conferred by rare protein-truncating variants is conserved across diverse human populations. Nat. Genet. 55, 369–376 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Ganna, A. et al. Quantifying the impact of rare and ultra-rare coding variation across the phenotypic spectrum. Am. J. Hum. Genet. 102, 1204–1211 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Palmer, D. S. et al. Exome sequencing in bipolar disorder identifies AKAP11 as a risk gene shared with schizophrenia. Nat. Genet. 54, 541–547 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Tian, R. et al. Whole-exome sequencing in UK Biobank reveals rare genetic architecture for depression. Nat. Commun. 15, 1755 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Mitchell, B. L. et al. The Australian genetics of depression study: new risk loci and dissecting heterogeneity between subtypes. Biol. Psychiatry 92, 227–235 (2022).

    PubMed  CAS  Google Scholar 

  54. Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Eichler, E. E. et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat. Rev. Genet. 11, 446–450 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Cheng, C.-M. et al. Co-aggregation of major psychiatric disorders in individuals with first-degree relatives with schizophrenia: a nationwide population-based study. Mol. Psychiatry 23, 1756–1763 (2018).

    PubMed  Google Scholar 

  57. Kendler, K. S., Ohlsson, H., Sundquist, J. & Sundquist, K. An extended Swedish national adoption study of bipolar disorder illness and cross-generational familial association with schizophrenia and major depression. JAMA Psychiatry 77, 814–822 (2020).

    PubMed  Google Scholar 

  58. Song, J. et al. Bipolar disorder and its relation to major psychiatric disorders: a family-based study in the Swedish population. Bipolar Disord. 17, 184–193 (2015).

    PubMed  Google Scholar 

  59. Hindley, G. et al. Charting the landscape of genetic overlap between mental disorders and related traits beyond genetic correlation. Am. J. Psychiatry 179, 833–843 (2022).

    PubMed  PubMed Central  Google Scholar 

  60. van Rheenen, W., Peyrot, W. J., Schork, A. J., Lee, S. H. & Wray, N. R. Genetic correlations of polygenic disease traits: from theory to practice. Nat. Rev. Genet. 20, 567–581 (2019).

    PubMed  Google Scholar 

  61. Border, R. et al. Cross-trait assortative mating is widespread and inflates genetic correlation estimates. Science 378, 754–761 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  62. Wray, N. R., Lee, S. H. & Kendler, K. S. Impact of diagnostic misclassification on estimation of genetic correlations using genome-wide genotypes. Eur. J. Hum. Genet. 20, 668–674 (2012).

    PubMed  PubMed Central  Google Scholar 

  63. Cai, N. et al. Minimal phenotyping yields genome-wide association signals of low specificity for major depression. Nat. Genet. 52, 437–447 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Allardyce, J. et al. Association between schizophrenia-related polygenic liability and the occurrence and level of mood-incongruent psychotic symptoms in bipolar disorder. JAMA Psychiatry 75, 28–35 (2018).

    PubMed  Google Scholar 

  65. Bipolar Disorder and Schizophrenia Working Group of the Psychiatric Genomics Consortium. Genomic dissection of bipolar disorder and schizophrenia, including 28 subphenotypes. Cell 173, 1705–1715 (2018).

    PubMed Central  Google Scholar 

  66. Charney, A. W. et al. Evidence for genetic heterogeneity between clinical subtypes of bipolar disorder. Transl. Psychiatry 7, e993 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  67. Dennison, C. A. et al. Risk factors, clinical features, and polygenic risk scores in schizophrenia and schizoaffective disorder depressive-type. Schizophr. Bull. 47, 1375–1384 (2021).

    PubMed  PubMed Central  Google Scholar 

  68. Richards, A. L. et al. Genetic liabilities differentiating bipolar disorder, schizophrenia, and major depressive disorder, and phenotypic heterogeneity in bipolar disorder. JAMA Psychiatry 79, 1032–1039 (2022).

    PubMed  PubMed Central  Google Scholar 

  69. Song, J. et al. Key subphenotypes of bipolar disorder are differentially associated with polygenic liabilities for bipolar disorder, schizophrenia, and major depressive disorder. Mol. Psychiatry 29, 1941–1950 (2024).

    PubMed  PubMed Central  Google Scholar 

  70. Jonsson, L. et al. Association of occupational dysfunction and hospital admissions with different polygenic profiles in bipolar disorder. Am. J. Psychiatry 181, 620–629 (2024).

    PubMed  Google Scholar 

  71. Schubert, K. O. et al. Combining schizophrenia and depression polygenic risk scores improves the genetic prediction of lithium response in bipolar disorder patients. Transl. Psychiatry 11, 606 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  72. Coe, B. P. et al. Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat. Genet. 46, 1063–1071 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Sanders, S. J. et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron 87, 1215–1233 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  74. Montanucci, L. et al. Genome-wide identification and phenotypic characterization of seizure-associated copy number variations in 741,075 individuals. Nat. Commun. 14, 4392 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  75. Gudmundsson, O. O. et al. Attention-deficit hyperactivity disorder shares copy number variant risk with schizophrenia and autism spectrum disorder. Transl. Psychiatry 9, 258 (2019).

    PubMed  PubMed Central  Google Scholar 

  76. Satterstrom, F. K. et al. Autism spectrum disorder and attention deficit hyperactivity disorder have a similar burden of rare protein-truncating variants. Nat. Neurosci. 22, 1961–1965 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  77. Rees, E. et al. Schizophrenia, autism spectrum disorders and developmental disorders share specific disruptive coding mutations. Nat. Commun. 12, 5353 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  78. Hubbard, L. et al. Rare copy number variants are associated with poorer cognition in schizophrenia. Biol. Psychiatry 90, 28–34 (2021).

    PubMed  CAS  Google Scholar 

  79. Creeth, H. D. J. et al. Ultrarare coding variants and cognitive function in schizophrenia. JAMA Psychiatry 79, 963–970 (2022).

    PubMed  PubMed Central  Google Scholar 

  80. Bergen, S. E. et al. Joint contributions of rare copy number variants and common SNPs to risk for schizophrenia. Am. J. Psychiatry 176, 29–35 (2019).

    PubMed  Google Scholar 

  81. Tansey, K. E. et al. Common alleles contribute to schizophrenia in CNV carriers. Mol. Psychiatry 21, 1085–1089 (2016).

    PubMed  CAS  Google Scholar 

  82. Davies, R. W. et al. Using common genetic variation to examine phenotypic expression and risk prediction in 22q11.2 deletion syndrome. Nat. Med. 26, 1912–1918 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  83. Niemi, M. E. K. et al. Common genetic variants contribute to risk of rare severe neurodevelopmental disorders. Nature 562, 268–271 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  84. Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 50, 668–681 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  85. Li, Y. E. et al. A comparative atlas of single-cell chromatin accessibility in the human brain. Science 382, eadf7044 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  86. Yao, S. et al. Connecting genomic results for psychiatric disorders to human brain cell types and regions reveals convergence with functional connectivity. Nat. Commun. 16, 395 (2025).

    PubMed  PubMed Central  CAS  Google Scholar 

  87. Skene, N. G. et al. Genetic identification of brain cell types underlying schizophrenia. Nat. Genet. 50, 825–833 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  88. Li, M. et al. Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science 362, eaat7615 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  89. de la Torre-Ubieta et al. The dynamic landscape of open chromatin during human cortical neurogenesis. Cell 172, 289–304 (2018).

    PubMed  PubMed Central  Google Scholar 

  90. Kouakou, M. R. et al. Sites of active gene regulation in the prenatal frontal cortex and their role in neuropsychiatric disorders. Am. J. Med. Genet. B Neuropsychiatr. Genet. 186, 376–388 (2021).

    PubMed  CAS  Google Scholar 

  91. Liang, D. et al. Cell-type-specific effects of genetic variation on chromatin accessibility during human neuronal differentiation. Nat. Neurosci. 24, 941–953 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  92. Ziffra, R. S. et al. Single-cell epigenomics reveals mechanisms of human cortical development. Nature 598, 205–213 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  93. Cameron, D. et al. Single-nuclei RNA sequencing of 5 regions of the human prenatal brain implicates developing neuron populations in genetic risk for schizophrenia. Biol. Psychiatry 93, 157–166 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  94. Zhu, K. et al. Multi-omic profiling of the developing human cerebral cortex at the single-cell level. Sci. Adv. 9, eadg3754 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  95. Cameron, D. et al. Genetic implication of prenatal GABAergic and cholinergic neuron development in susceptibility to schizophrenia. Schizophr. Bull. 50, 1171–1184 (2024).

    PubMed  PubMed Central  Google Scholar 

  96. Heffel, M. G. et al. Temporally distinct 3D multi-omic dynamics in the developing human brain. Nature 635, 481–489 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  97. Mannens, C. C. A. et al. Chromatin accessibility during human first-trimester neurodevelopment. Nature https://doi.org/10.1038/s41586-024-07234-1 (2024).

    Article  PubMed  Google Scholar 

  98. Als, T. D. et al. Depression pathophysiology, risk prediction of recurrence and comorbid psychiatric disorders using genome-wide analyses. Nat. Med. 29, 1832–1844 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  99. Kirov, G. et al. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol. Psychiatry 17, 142–153 (2012).

    PubMed  CAS  Google Scholar 

  100. Pocklington, A. J. et al. Novel findings from CNVs implicate inhibitory and excitatory signaling complexes in schizophrenia. Neuron 86, 1203–1214 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  101. De Rubeis, S. et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209–215 (2014).

    PubMed  PubMed Central  Google Scholar 

  102. Priya, A., Johar, K. & Wong-Riley, M. T. T. Specificity protein 4 functionally regulates the transcription of NMDA receptor subunits GluN1, GluN2A, and GluN2B. Biochim. Biophys. Acta 1833, 2745–2756 (2013).

    PubMed  CAS  Google Scholar 

  103. Javitt, D. C. & Zukin, S. R. Recent advances in the phencyclidine model of schizophrenia. Am. J. Psychiatry 148, 1301–1308 (1991).

    PubMed  CAS  Google Scholar 

  104. Krystal, J. H. et al. NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology 169, 215–233 (2003).

    PubMed  CAS  Google Scholar 

  105. Sekar, A. et al. Schizophrenia risk from complex variation of complement component 4. Nature 530, 177–183 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  106. Glanville, K. P. et al. Classical human leukocyte antigen alleles and C4 haplotypes are not significantly associated with depression. Biol. Psychiatry 87, 419–430 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  107. Cross-Disorder Group of the Psychiatric Genomics Consortium. Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell 179, 1469–1482 (2019).

    PubMed Central  Google Scholar 

  108. Byrne, E. M. et al. Conditional GWAS analysis to identify disorder-specific SNPs for psychiatric disorders. Mol. Psychiatry 26, 2070–2081 (2021).

    PubMed  CAS  Google Scholar 

  109. Hall, L. S. et al. Cis-effects on gene expression in the human prenatal brain associated with genetic risk for neuropsychiatric disorders. Mol. Psychiatry 26, 2082–2088 (2021).

    PubMed  CAS  Google Scholar 

  110. Zhang, D. et al. Spatial epigenome-transcriptome co-profiling of mammalian tissues. Nature 616, 113–122 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  111. Song, L. et al. Spatially resolved mapping of cells associated with human complex traits. Nature https://doi.org/10.1038/s41586-025-08757-x (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Bryois, J. et al. Cell-type-specific cis-eQTLs in eight human brain cell types identify novel risk genes for psychiatric and neurological disorders. Nat. Neurosci. 25, 1104–1112 (2022).

    PubMed  CAS  Google Scholar 

  113. Brennand, K. J. Using stem cell models to explore the genetics underlying psychiatric disorders: linking risk variants, genes, and biology in brain disease. Am. J. Psychiatry 179, 322–328 (2022).

    PubMed  Google Scholar 

  114. Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  115. Leung, S. K. et al. Full-length transcript sequencing of human and mouse cerebral cortex identifies widespread isoform diversity and alternative splicing. Cell Rep. 37, 110022 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  116. Murray, G. K. et al. Could polygenic risk scores be useful in psychiatry? A review. JAMA Psychiatry 78, 210–219 (2021). This review covers the potential use of polygenic risk scores in psychiatry in different population and clinical settings.

    PubMed  Google Scholar 

  117. Morris, E., O’Donovan, M., Virani, A. & Austin, J. An ethical analysis of divergent clinical approaches to the application of genetic testing for autism and schizophrenia. Hum. Genet. 141, 1069–1084 (2022).

    PubMed  CAS  Google Scholar 

  118. Ward, E. T., Kostick, K. M. & Lázaro-Muñoz, G. Integrating genomics into psychiatric practice: ethical and legal challenges for clinicians. Harv. Rev. Psychiatry 27, 53–64 (2019).

    PubMed  PubMed Central  Google Scholar 

  119. Wray, N. R., Yang, J., Goddard, M. E. & Visscher, P. M. The genetic interpretation of area under the ROC curve in genomic profiling. PLoS Genet. 6, e1000864 (2010).

    PubMed  PubMed Central  Google Scholar 

  120. Sullivan, P. F. & Owen, M. J. Increasing the clinical psychiatric knowledge base about pathogenic copy number variation. Am. J. Psychiatry 177, 204–209 (2020).

    PubMed  PubMed Central  Google Scholar 

  121. International Society of Psychiatric Genetics. ISPG Genetic Testing Statement. IPSG https://ispg.net/genetic-testing-statement (2019).

  122. Kendall, K. M. et al. The translation of psychiatric genetic findings to the clinic. Schizophr. Res. 267, 470–472 (2024).

    PubMed  CAS  Google Scholar 

  123. Chawner, S. J., Watson, C. J. & Owen, M. J. Clinical evaluation of patients with a neuropsychiatric risk copy number variant. Curr. Opin. Genet. Dev. 68, 26–34 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  124. Pirmohamed, M. Pharmacogenomics: current status and future perspectives. Nat. Rev. Genet. 24, 350–362 (2023).

    PubMed  CAS  Google Scholar 

  125. Bousman, C. A., Maruf, A. A., Marques, D. F., Brown, L. C. & Müller, D. J. The emergence, implementation, and future growth of pharmacogenomics in psychiatry: a narrative review. Psychol. Med. 53, 7983–7993 (2023).

    PubMed  PubMed Central  Google Scholar 

  126. Bousman, C. A. et al. Review and consensus on pharmacogenomic testing in psychiatry. Pharmacopsychiatry 54, 5–17 (2021).

    PubMed  Google Scholar 

  127. Swen, J. J. et al. A 12-gene pharmacogenetic panel to prevent adverse drug reactions: an open-label, multicentre, controlled, cluster-randomised crossover implementation study. Lancet 401, 347–356 (2023).

    PubMed  CAS  Google Scholar 

  128. Pardiñas, A. F. et al. Pharmacokinetics and pharmacogenomics of clozapine in an ancestrally diverse sample: a longitudinal analysis and genome-wide association study using UK clinical monitoring data. Lancet Psychiatry 10, 209–219 (2023).

    PubMed  PubMed Central  Google Scholar 

  129. Legge, S. E. et al. A genome-wide association study in individuals of African ancestry reveals the importance of the Duffy-null genotype in the assessment of clozapine-related neutropenia. Mol. Psychiatry 24, 328–337 (2019).

    PubMed  CAS  Google Scholar 

  130. Li, D. et al. Metabolic activity of CYP2C19 and CYP2D6 on antidepressant response from 13 clinical studies using genotype imputation: a meta-analysis. Transl. Psychiatry 14, 296 (2024).

    PubMed  PubMed Central  Google Scholar 

  131. Hou, L. et al. Genetic variants associated with response to lithium treatment in bipolar disorder: a genome-wide association study. Lancet 387, 1085–1093 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  132. Pardiñas, A. F. et al. Interaction testing and polygenic risk scoring to estimate the association of common genetic variants with treatment resistance in schizophrenia. JAMA Psychiatry 79, 260–269 (2022).

    PubMed  Google Scholar 

  133. Pardiñas, A. F., Owen, M. J. & Walters, J. T. R. Pharmacogenomics: a road ahead for precision medicine in psychiatry. Neuron 109, 3914–3929 (2021).

    PubMed  Google Scholar 

  134. Hawkes, G. et al. Whole-genome sequencing in 333,100 individuals reveals rare non-coding single variant and aggregate associations with height. Nat. Commun. 15, 8549 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  135. Halvorsen, M. et al. Increased burden of ultra-rare structural variants localizing to boundaries of topologically associated domains in schizophrenia. Nat. Commun. 11, 1842 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  136. Panagiotakos, G. & Pasca, S. P. A matter of space and time: emerging roles of disease-associated proteins in neural development. Neuron 110, 195–208 (2022).

    PubMed  CAS  Google Scholar 

  137. Owen, M. J. & O’Donovan, M. C. The genetics of cognition in schizophrenia. Genom. Psychiatry 1, 1–8 (2024).

    Google Scholar 

  138. Grotzinger, A. D. et al. Genetic architecture of 11 major psychiatric disorders at biobehavioral, functional genomic and molecular genetic levels of analysis. Nat. Genet. 54, 548–559 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  139. Factsheet on mental disorders. World Health Organization https://www.who.int/news-room/fact-sheets/detail/mental-disorders (2022).

  140. Owen, M. J., Sawa, A. & Mortensen, P. B. Schizophrenia. Lancet 388, 86–97 (2016).

    PubMed  PubMed Central  Google Scholar 

  141. Hamshere, M. L. et al. Age-at-onset in bipolar-I disorder: mixture analysis of 1369 cases identifies three distinct clinical sub-groups. J. Affect. Disord. 116, 23–29 (2009).

    PubMed  Google Scholar 

  142. Weissman, M. M. et al. Cross-national epidemiology of major depression and bipolar disorder. JAMA 276, 293–299 (1996).

    PubMed  CAS  Google Scholar 

  143. Sullivan, P. F., Kendler, K. S. & Neale, M. C. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch. Gen. Psychiatry 60, 1187–1192 (2003).

    PubMed  Google Scholar 

  144. McGuffin, P., Katz, R., Watkins, S. & Rutherford, J. A hospital-based twin register of the heritability of DSM-IV unipolar depression. Arch. Gen. Psychiatry 53, 129–136 (1996).

    PubMed  CAS  Google Scholar 

  145. Weiner, D. J. et al. Polygenic architecture of rare coding variation across 394,783 exomes. Nature 614, 492–499 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  146. Meng, X. et al. Multi-ancestry genome-wide association study of major depression aids locus discovery, fine mapping, gene prioritization and causal inference. Nat. Genet. 56, 222–233 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  147. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

    PubMed  PubMed Central  Google Scholar 

  148. Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  149. GTEx Consortium. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).

    PubMed Central  Google Scholar 

  150. Owen, M. J. New approaches to psychiatric diagnostic classification. Neuron 84, 564–571 (2014).

    PubMed  CAS  Google Scholar 

  151. Kendell, R. & Jablensky, A. Distinguishing between the validity and utility of psychiatric diagnoses. Am. J. Psychiatry 160, 4–12 (2003).

    PubMed  Google Scholar 

  152. Hyman, S. E. The diagnosis of mental disorders: the problem of reification. Annu. Rev. Clin. Psychol. 6, 155–179 (2010).

    PubMed  Google Scholar 

  153. Owen, M. J. & O’Donovan, M. C. Large-scale genomics: a paradigm shift in psychiatry? Biol. Psychiatry 89, 5–7 (2021).

    PubMed  Google Scholar 

  154. Wang, Y. et al. Aspiring toward equitable benefits from genomic advances to individuals of ancestrally diverse backgrounds. Am. J. Hum. Genet. 111, 809–824 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  155. Martin, A. R. et al. Increasing diversity in genomics requires investment in equitable partnerships and capacity building. Nat. Genet. 54, 740–745 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank S. Legge and S. Lock for creating the original version of Fig. 1a and Y. Baran for creating the original version of Fig. 3.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Michael J. Owen.

Ethics declarations

Competing interests

All authors receive grants from the Takeda Pharmaceutical Company Ltd, outside of the submitted work. M.J.O., J.T.R.W. and M.C.O’D. received grants from Akrivia Health, outside the submitted work. Takeda and Akrivia had no involvement in the conception, design, implementation or interpretation of this Review.

Peer review

Peer review information

Nature Reviews Genetics thanks Jason Stein and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Depression Genetics in Africa: https://wellcome.org/grant-funding/people-and-projects/grants-awarded/depression-genetics-africa-depgenafrica

Latin American Genomics Consortium: https://www.latinamericangenomicsconsortium.org/

Neuropsychiatric Genetics in African Populations: https://www.broadinstitute.org/stanley-centre-psychiatric-research/stanley-global/neuropsychiatric-genetics-african-populations-neurogap

Glossary

Burden test

Frequently used to increase the power of exome-wide association studies. They combine sets of variants within a gene to produce a single burden score that is then tested for association.

Common variants

Variants that are present in the population at frequencies of 1% or more. They include single-nucleotide polymorphisms, which can be assayed in parallel across the genome in genome-wide association studies.

Copy number variants

(CNVs). Variants for which the number of copies of a specific segment of DNA varies in the population. These structural differences between individuals may have arisen as a result of duplications, deletions or other changes.

Delusion

A fixed, false belief that is not amenable to change despite conflicting evidence.

Depression

A mental state that involves low mood and decreased activity.

Genetic correlation

(rg). An estimate of the average similarity of causal allelic effects on two traits. This usually refers to the genome-wide average, although it can be specified to be locus wide or chromosome wide. A high degree of genetic correlation is usually indicative of pleiotropy.

Hallucination

A perception in the absence of an external stimulus that has a compelling sense of reality.

Hypomania

A less severe form of mania that is not accompanied by marked functional impairments (for example, to occupation or personal relationships).

Loss-of-function mutation-intolerant genes

Genes with near-complete depletion of protein-truncating variants in population studies, suggesting that there is strong direct selection against such variants.

Mania

A mental state that involves elevated mood, which can be euphoric or irritable, and increased activity.

Mood-incongruent psychotic symptoms

Hallucinations or delusions that are not aligned with the person’s current mood state.

Pleiotropy

Describes the phenomenon whereby a variant or gene influences more than one phenotype. The terms ‘direct’, ‘horizontal’ and ‘biological’ pleiotropy imply that the effects on the phenotypes are independent. The terms ‘mediated’, ‘vertical’ and ‘indirect’ pleiotropy imply that the effects on one phenotype are mediated through the other; for example, alleles that influence smoking behaviour are likely to have pleiotropic effects on all traits for which smoking is a risk factor.

Polygenic risk score

(PRS). Summarizes the estimated effect of many genetic variants on an individual’s phenotype. It is typically calculated as a weighted sum of trait-associated alleles.

Protein-truncating variants

(PTVs). Variants that are predicted to shorten the coding sequence of a gene and which may result in reduced expression of that gene and its protein owing to nonsense-mediated decay. They include nonsense, frameshift and essential splice site variants.

Psychotic symptoms

Symptoms, particularly delusions and hallucinations, that involve difficulty in determining what is real from what is not.

Rare coding variants

(RCVs). Variants in the coding sequence of a gene that are present in less than 1% of the population. They can be detected by genome-wide sequencing studies.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Owen, M.J., Bray, N.J., Walters, J.T.R. et al. Genomics of schizophrenia, bipolar disorder and major depressive disorder. Nat Rev Genet 26, 862–877 (2025). https://doi.org/10.1038/s41576-025-00843-0

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41576-025-00843-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载