+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tackling the emerging threat of antifungal resistance to human health

Abstract

Invasive fungal infections pose an important threat to public health and are an under-recognized component of antimicrobial resistance, an emerging crisis worldwide. Across a period of profound global environmental change and expanding at-risk populations, human-infecting pathogenic fungi are evolving resistance to all licensed systemic antifungal drugs. In this Review, we highlight the main mechanisms of antifungal resistance and explore the similarities and differences between bacterial and fungal resistance to antimicrobial control. We discuss the research and innovation topics that are needed for risk reduction strategies aimed at minimizing the emergence of resistance in pathogenic fungi. These topics include links between the environment and One Health, surveillance, diagnostics, routes of transmission, novel therapeutics and methods to mitigate hotspots for fungal adaptation. We emphasize the global efforts required to steward our existing antifungal armamentarium, and to direct the research and development of future therapies and interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Major routes to acquiring antifungal drug resistance and/or tolerance in key invasive human fungal pathogens.
Fig. 2: Emerging antifungal resistance and environment–One Health drivers.
Fig. 3: Resistance detection, tracking and surveillance.
Fig. 4: Interventions for invasive fungal infections within the landscape of antifungal resistance.

Similar content being viewed by others

References

  1. Bongomin, F., Gago, S., Oladele, R. O. & Denning, D. W. Global and multi-national prevalence of fungal diseases-estimate precision. J. Fungi https://doi.org/10.3390/jof3040057 (2017).

    Article  Google Scholar 

  2. Brown, G. D. et al. Hidden killers: human fungal infections. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.3004404 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Robbins, N., Caplan, T. & Cowen, L. E. Molecular evolution of antifungal drug resistance. Annu. Rev. Microbiol. 71, 753–775 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Fisher, M. C., Hawkins, N. J., Sanglard, D. & Gurr, S. J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 360, 739–742 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Verweij, P. E. et al. The one health problem of azole resistance in Aspergillus fumigatus: current insights and future research agenda. Fungal Biol. Rev. 34, 202–214 (2020).

    Article  Google Scholar 

  6. Rhodes, J. & Fisher, M. C. Global epidemiology of emerging Candida auris. Curr. Opin. Microbiol. 52, 84–89 (2019).

    Article  PubMed  Google Scholar 

  7. CDC. Antibiotic resistance threats in the United States, 2019. Centers for Disease Control and Prevention www.cdc.gov/DrugResistance/Biggest-Threats.html (2019).

  8. Fisher, M. C. et al. Threats posed by the fungal kingdom to humans, wildlife, and agriculture. mBio https://doi.org/10.1128/mBio.00449-20 (2020).

  9. Rodrigues, M. L. & Nosanchuk, J. D. Fungal diseases as neglected pathogens: a wake-up call to public health officials. PLoS Negl. Trop. Dis. 14, e0007964 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Baker, S., Thomson, N., Weill, F. X. & Holt, K. E. Genomic insights into the emergence and spread of antimicrobial-resistant bacterial pathogens. Science 360, 733–738 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Edlind, T. D. & Katiyar, S. K. Mutational analysis of flucytosine resistance in Candida glabrata. Antimicrob. Agents Chemother. 54, 4733–4738 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Berman, J. & Krysan, D. J. Drug resistance and tolerance in fungi. Nat. Rev. Microbiol. 18, 319–331 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ballard, E. et al. In-host microevolution of Aspergillus fumigatus: a phenotypic and genotypic analysis. Fungal Genet. Biol. 113, 1–13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shields, R. K. et al. The presence of an FKS mutation rather than MIC is an independent risk factor for failure of echinocandin therapy among patients with invasive candidiasis due to Candida glabrata. Antimicrob. Agents Chemother. 56, 4862–4869 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Steinmann, J. et al. Emergence of azole-resistant invasive aspergillosis in HSCT recipients in Germany. J. Antimicrob. Chemother. 70, 1522–1526 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Pristov, K. E. & Ghannoum, M. A. Resistance of Candida to azoles and echinocandins worldwide. Clin. Microbiol. Infect. 25, 792–798 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Johnson, E. M., Warnock, D. W., Luker, J., Porter, S. R. & Scully, C. Emergence of azole drug resistance in Candida species from HIV-infected patients receiving prolonged fluconazole therapy for oral candidosis. J. Antimicrob. Chemother. 35, 103–114 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Laverdiere, M. et al. Progressive loss of echinocandin activity following prolonged use for treatment of Candida albicans oesophagitis. J. Antimicrob. Chemother. 57, 705–708 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Joint Programming Initiative on Antimicrobial Resistance. JPIAMR Strategic Research and Innovation Agenda on Antimicrobial Resistance. JPIAMR https://www.jpiamr.eu/app/uploads/2021/06/JPIAMR_SRIA_2021.pdf (2021).

  20. Public Health England. Laboratory Surveillance of Candidaemia in England, Wales and Northern Ireland: 2018 (Public Health England, 2019).

  21. Wauters, J. et al. Invasive pulmonary aspergillosis is a frequent complication of critically ill H1N1 patients: a retrospective study. Intensive Care Med. 38, 1761–1768 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Armstrong-James, D. et al. Confronting and mitigating the risk of COVID-19 associated pulmonary aspergillosis. Eur. Respir. J. https://doi.org/10.1183/13993003.02554-2020 (2020).

  23. Garg, D. et al. Coronavirus disease (COVID-19) associated mucormycosis (CAM): case report and systematic review of literature. Mycopathologia 186, 289–298 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Janssen, N. A. F. et al. Multinational observational cohort study of COVID-19-associated pulmonary aspergillosis. Emerg. Infect. Dis. 27, 2892–2898 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Arastehfar, A. et al. COVID-19-associated candidiasis (CAC): an underestimated complication in the absence of immunological predispositions? J. Fungi https://doi.org/10.3390/jof6040211 (2020).

    Article  Google Scholar 

  26. Singh, A. K., Singh, R., Joshi, S. R. & Misra, A. Mucormycosis in COVID-19: a systematic review of cases reported worldwide and in India. Diabetes Metab. Syndr. 15, 102146 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fisher, M. C., Rannala, B., Chaturvedi, V. & Taylor, J. W. Disease surveillance in recombining pathogens: multilocus genotypes identify sources of human Coccidioides infections. Proc. Natl Acad. Sci. USA 99, 9067–9071 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ashu, E. E., Hagen, F., Chowdhary, A., Meis, J. F. & Xu, J. Global population genetic analysis of Aspergillus fumigatus. Msphere https://doi.org/10.1128/mSphere.00019-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sewell, T. R. et al. Nonrandom distribution of azole resistance across the global population of Aspergillus fumigatus. mBio https://doi.org/10.1128/mBio.00392-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rhodes, J. et al. Population genomics confirms acquisition of drug resistance Aspergillus fumigatus infection by humans from the environment Nat. Microbiol. in press.

  31. Vanhove, M. et al. Genomic epidemiology of Cryptococcus yeasts identifies adaptation to environmental niches underpinning infection across an African HIV/AIDS cohort. Mol. Ecol. 26, 1991–2005 (2017).

    Article  PubMed  Google Scholar 

  32. Steinberg, G. et al. A lipophilic cation protects crops against fungal pathogens by multiple modes of action. Nat. Commun. 11, 1608 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Toda, M., Beer, K. D., Kuivila, K. M., Chiller, T. M. & Jackson, B. R. Trends in agricultural triazole fungicide use in the United States, 1992–2016 and possible implications for antifungal-resistant fungi in human disease. Env. Health Perspect. 129, 55001 (2021).

    Article  CAS  Google Scholar 

  34. Chen, Y. et al. High azole resistance in Aspergillus fumigatus isolates from strawberry fields, China, 2018. Emerg. Infect. Dis. 26, 81–89 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. European Centre for Disease Prevention and Control. Risk Assessment on the Impact of Environmental Usage of Triazoles on the Development and Spread of Resistance to Medical Triazoles in Aspergillus Species (ECDC, 2013).

  36. Snelders, E. et al. Possible environmental origin of resistance of Aspergillus fumigatus to medical triazoles. Appl. Env. Microb. 75, 4053–4057 (2009).

    Article  CAS  Google Scholar 

  37. Schoustra, S. E. et al. New Insights in the Development of Azole-resistance in Aspergillus fumigatus (RIVM: National Institute for Public Health and the Environment, 2018).

  38. Sewell, T. R. et al. Elevated prevalence of azole-resistant aspergillus fumigatus in urban versus rural environments in the United Kingdom. Antimicrob. Agents Chemother. 63, e00548–19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou, D. et al. Extensive genetic diversity and widespread azole resistance in greenhouse populations of Aspergillus fumigatus in Yunnan, China. Msphere https://doi.org/10.1128/mSphere.00066-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Burks, C., Darby, A., Gomez Londono, L., Momany, M. & Brewer, M. T. Azole-resistant Aspergillus fumigatus in the environment: identifying key reservoirs and hotspots of antifungal resistance. PLoS Pathog. 17, e1009711 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dunne, K., Hagen, F., Pomeroy, N., Meis, J. F. & Rogers, T. R. Intercountry transfer of triazole-resistant Aspergillus fumigatus on plant bulbs. Clin. Infect. Dis. 65, 147–149 (2017).

    Article  PubMed  Google Scholar 

  42. Shelton, J. M. G., Fisher, M. C. & Singer, A. S. Campaign-based citizen science for environmental mycology: the science solstice and summer soil-stice projects to assess drug resistance in air- and soil-borne Aspergillus fumigatus. Citiz. Sci. Theory Pract. 5, 1–13 (2020).

    Google Scholar 

  43. Rocchi, S. et al. Molecular epidemiology of azole-resistant Aspergillus fumigatus in France shows patient and healthcare links to environmentally occurring genotypes. Front. Cell Infect. Microbiol. 11, 729476 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hagiwara, D. et al. A novel Zn2-Cys6 transcription factor AtrR plays a key role in an azole resistance mechanism of Aspergillus fumigatus by co-regulating cyp51A and cdr1B expressions. PLoS Pathog. 13, e1006096 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Paul, S. et al. AtrR is an essential determinant of azole resistance in Aspergillus fumigatus. mBio https://doi.org/10.1128/mBio.02563-18 (2019).

  46. Yasmin, S. et al. Mevalonate governs interdependency of ergosterol and siderophore biosyntheses in the fungal pathogen Aspergillus fumigatus. Proc. Natl Acad. Sci. USA 109, E497–E504 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Carneiro, H. C. S. et al. Hypervirulence and cross-resistance to a clinical antifungal are induced by an environmental fungicide in Cryptococcus gattii. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.140135 (2020).

    Article  PubMed  Google Scholar 

  48. Kamthan, A., Kamthan, M. & Datta, A. Expression of C-5 sterol desaturase from an edible mushroom in fisson yeast enhances its ethanol and thermotolerance. PLoS ONE 12, e0173381 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Duong, T.-M. N., Le, T.-V., Tran, K.-L. H. & Beardsley, J. Azole-resistant Aspergillus fumigatus is highly prevalent in the environment of Vietnam, with marked variability by land use type. Environ. Microbiol. https://doi.org/10.1111/1462-2920.15660 (2021).

    Article  PubMed  Google Scholar 

  50. Van Rhijn, N. & Bromley, M. The consequences of our changing environment on life threatening and debilitating fungal diseases in humans. J. Fungi https://doi.org/10.3390/jof7050367 (2021).

    Article  Google Scholar 

  51. Casadevall, A., Kontoyiannis, D. P. & Robert, V. On the emergence of Candida auris: climate change, azoles, swamps, and birds. mBio https://doi.org/10.1128/mBio.01397-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Fisher, M. C., Gow, N. A. R. & Gurr, S. J. Tackling emerging fungal threats to animal health, food security and ecosystem resilience. Philos. Trans. R. Soc. B Lond. B Biol. Sci. https://doi.org/10.1098/rstb.2016.0332 (2016).

  53. Berkow, E. L., Lockhart, S. R. & Ostrosky-Zeichner, L. Antifungal susceptibility testing: current approaches. Clin. Microbiol. Rev. https://doi.org/10.1128/CMR.00069-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Clancy, C. J. & Nguyen, M. H. Finding the “missing 50%” of invasive candidiasis: how nonculture diagnostics will improve understanding of disease spectrum and transform patient care. Clin. Infect. Dis. 56, 1284–1292 (2013).

    Article  PubMed  Google Scholar 

  55. Levy, H., Horak, D. A., Tegtmeier, B. R., Yokota, S. B. & Forman, S. J. The value of bronchoalveolar lavage and bronchial washings in the diagnosis of invasive pulmonary aspergillosis. Respir. Med. 86, 243–248 (1992).

    Article  CAS  PubMed  Google Scholar 

  56. White, P. L., Price, J. S. & Backx, M. Pneumocystis jirovecii pneumonia: epidemiology, clinical manifestation and diagnosis. Curr. Fungal Infect. Rep. 13, 260–273 (2019).

    Article  Google Scholar 

  57. Johnson, E. M. in Antifungal Susceptibility Testing and Resistance Ch. 47 (eds Kibbler, C. C. et. al.) (Oxford Univ. Press, 2017).

  58. Bader, O. Fungal species identification by MALDI-ToF mass spectrometry. Methods Mol. Biol. 1508, 323–337 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Vatanshenassan, M. et al. Proof of concept for MBT ASTRA, a rapid matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS)-based method to detect caspofungin resistance in Candida albicans and Candida glabrata. J. Clin. Microbiol. https://doi.org/10.1128/JCM.00420-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zvezdanova, M. E. et al. Detection of azole resistance in Aspergillus fumigatus complex isolates using MALDI-TOF mass spectrometry. Clin. Microbiol. Infect. https://doi.org/10.1016/j.cmi.2021.06.005 (2021).

    Article  PubMed  Google Scholar 

  61. Garcia-Effron, G. Molecular markers of antifungal resistance: potential uses in routine practice and future perspectives. J. Fungi https://doi.org/10.3390/jof7030197 (2021).

  62. Chong, G. M. et al. Interspecies discrimination of A. fumigatus and siblings A. lentulus and A. felis of the Aspergillus section Fumigati using the AsperGenius® assay. Diagn. Microbiol. Infect. Dis. 87, 247–252 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Leach, L., Russell, A., Zhu, Y., Chaturvedi, S. & Chaturvedi, V. A rapid and automated sample-to-result Candida auris real-time PCR assay for high-throughput testing of surveillance samples with the BD max open system. J. Clin. Microbiol. https://doi.org/10.1128/JCM.00630-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Chong, G. M. et al. PCR-based detection of Aspergillus fumigatus Cyp51A mutations on bronchoalveolar lavage: a multicentre validation of the AsperGenius assay® in 201 patients with haematological disease suspected for invasive aspergillosis. J. Antimicrob. Chemother. 71, 3528–3535 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Montesinos, I. et al. Evaluation of a new commercial real-time PCR assay for diagnosis of Pneumocystis jirovecii pneumonia and identification of dihydropteroate synthase (DHPS) mutations. Diagn. Microbiol. Infect. Dis. 87, 32–36 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Perlin, D. S. & Wiederhold, N. P. Culture-independent molecular methods for detection of antifungal resistance mechanisms and fungal identification. J. Infect. Dis. 216, S458–S465 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Hou, X. et al. Rapid detection of ERG11-associated azole resistance and FKS-associated echinocandin resistance in Candida auris. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.01811-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Pham, C. D., Bolden, C. B., Kuykendall, R. J. & Lockhart, S. R. Development of a Luminex-based multiplex assay for detection of mutations conferring resistance to echinocandins in Candida glabrata. J. Clin. Microbiol. 52, 790–795 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yu, L. S. et al. Rapid detection of azole-resistant Aspergillus fumigatus in clinical and environmental isolates by use of a lab-on-a-chip diagnostic system. J. Clin. Microbiol. https://doi.org/10.1128/JCM.00843-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Novak-Frazer, L. et al. Deciphering Aspergillus fumigatus cyp51A-mediated triazole resistance by pyrosequencing of respiratory specimens. J. Antimicrob. Chemother. 75, 3501–3509 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Walker, T. M. et al. Tuberculosis is changing. Lancet Infect. Dis. 17, 359–361 (2017).

    Article  PubMed  Google Scholar 

  72. Brackin, A. P., Hemmings, S. J., Fisher, M. C. & Rhodes, J. Fungal genomics in respiratory medicine: what, how and when? Mycopathologia 186, 589–608 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chow, N. A. et al. Tracing the evolutionary history and global expansion of Candida auris using population genomic analyses. mBio https://doi.org/10.1128/mBio.03364-19 (2020).

  74. Rhodes, J. et al. Genomic epidemiology of the UK outbreak of the emerging human fungal pathogen Candida auris. Emerg. Microbes Infect. 7, 43 (2018).

    PubMed  PubMed Central  Google Scholar 

  75. Pasic, L. et al. Consensus multilocus sequence typing scheme for Pneumocystis jirovecii. J. Fungi https://doi.org/10.3390/jof6040259 (2020).

    Article  Google Scholar 

  76. Ponce, C. A. et al. High prevalence of Pneumocystis jirovecii dihydropteroate synthase gene mutations in patients with a first episode of pneumocystis pneumonia in Santiago, Chile, and clinical response to trimethoprim–sulfamethoxazole therapy. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.01290-16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bueid, A. et al. Azole antifungal resistance in Aspergillus fumigatus: 2008 and 2009. J. Antimicrob. Chemother. 65, 2116–2118 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. IDSA. SENTRY program participating sites (1997–2016). Open Forum Infect. Dis. 6, S95–S102 (2019).

    Article  Google Scholar 

  79. Astvad, K. M. T. et al. Update from a 12-year nationwide fungemia surveillance: increasing intrinsic and acquired resistance causes concern. J. Clin. Microbiol. https://doi.org/10.1128/JCM.01564-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Escribano, P. et al. Azole resistance survey on clinical Aspergillus fumigatus isolates in Spain. Clin. Microbiol. Infect. https://doi.org/10.1016/j.cmi.2020.09.042 (2020).

    Article  PubMed  Google Scholar 

  81. Rivero-Menendez, O., Alastruey-Izquierdo, A., Mellado, E. & Cuenca-Estrella, M. Triazole resistance in Aspergillus spp.: a worldwide problem? J. Fungi https://doi.org/10.3390/jof2030021 (2016).

    Article  Google Scholar 

  82. Chowdhary, A., Sharma, C. & Meis, J. F. Candida auris: a rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. PLoS Pathog. 13, e1006290 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. WHO. First meeting of the WHO Antifungal Expert Group on Identifying Priority Fungal Pathogens: Meeting Report (World Health Organization, 2020).

  84. Alexander, B. D. et al. Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin. Infect. Dis. 56, 1724–1732 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Rhodes, J. et al. A population genomics approach to assessing the genetic basis of within-host microevolution underlying recurrent cryptococcal meningitis infection. G3 7, 1165–1176 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hens, B. et al. In silico modeling approach for the evaluation of gastrointestinal dissolution, supersaturation, and precipitation of posaconazole. Mol. Pharm. 14, 4321–4333 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Li, X. et al. A physiologically based pharmacokinetic model of voriconazole integrating time-dependent inhibition of CYP3A4, genetic polymorphisms of CYP2C19 and predictions of drug-drug interactions. Clin. Pharmacokinet. 59, 781–808 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Gerhart, J. G. et al. Physiologically-based pharmacokinetic modeling of fluconazole using plasma and cerebrospinal fluid samples from preterm and term infants. CPT Pharmacomet. Syst. Pharmacol. 8, 500–510 (2019).

    Article  CAS  Google Scholar 

  89. Campoli, P. et al. Pharmacokinetics of posaconazole within epithelial cells and fungi: insights into potential mechanisms of action during treatment and prophylaxis. J. Infect. Dis. 208, 1717–1728 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Di Paolo, M. et al. A retrospective ‘real-world’ cohort study of azole therapeutic drug monitoring and evolution of antifungal resistance in cystic fibrosis. JAC Antimicrob. Resist. 3, dlab026 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hope, W., Drusano, G. L. & Rex, J. H. Pharmacodynamics for antifungal drug development: an approach for acceleration, risk minimization and demonstration of causality. J. Antimicrob. Chemother. 71, 3008–3019 (2016).

    Article  PubMed  Google Scholar 

  92. Tangden, T. et al. The role of infection models and PK/PD modelling for optimising care of critically ill patients with severe infections. Intensive Care Med. 43, 1021–1032 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Chen, G. et al. Targeting the adaptability of heterogeneous aneuploids. Cell 160, 771–784 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ward, D. J., Hammond, E., Linden-Phillips, L. & Stevens, A. J. Trends in clinical development timeframes for antiviral drugs launched in the UK, 1981–2014: a retrospective observational study. BMJ Open 5, e009333 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Jorda, A. & Zeitlinger, M. Preclinical pharmacokinetic/pharmacodynamic studies and clinical trials in the drug development process of EMA-approved antibacterial agents: a review. Clin. Pharmacokinet. 59, 1071–1084 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Maertens, J. A. et al. Isavuconazole versus voriconazole for primary treatment of invasive mould disease caused by Aspergillus and other filamentous fungi (SECURE): a phase 3, randomised-controlled, non-inferiority trial. Lancet 387, 760–769 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Jorgensen, K. M., Astvad, K. M. T., Hare, R. K. & Arendrup, M. C. EUCAST susceptibility testing of isavuconazole: MIC data for contemporary clinical mold and yeast isolates. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.00073-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Buil, J. B. et al. In vitro activity of the novel antifungal compound F901318 against difficult-to-treat Aspergillus isolates. J. Antimicrob. Chemother. 72, 2548–2552 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Larwood, D. J. Nikkomycin Z-ready to meet the promise? J. Fungi https://doi.org/10.3390/jof6040261 (2020).

    Article  Google Scholar 

  100. Nix, D. E., Swezey, R. R., Hector, R. & Galgiani, J. N. Pharmacokinetics of Nikkomycin Z after single rising oral doses. Antimicrob. Agents Chemother. 53, 2517–2521 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Brockhurst, M. A. et al. Assessing evolutionary risks of resistance for new antimicrobial therapies. Nat. Ecol. Evol. 3, 515–517 (2019).

    Article  PubMed  Google Scholar 

  102. Wang, M. et al. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat. Plants 2, 16151 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Macdonald, D. et al. Inducible cell fusion permits use of competitive fitness profiling in the human pathogenic fungus Aspergillus fumigatus. Antimicrob. Agents Chemother. 63, e01615–e01618 (2019).

    CAS  PubMed  Google Scholar 

  104. Lee, K. T. et al. Systematic functional analysis of kinases in the fungal pathogen Cryptococcus neoformans. Nat. Commun. https://doi.org/10.1038/ncomms12766 (2016).

  105. Logan, C., Martin-Loeches, I. & Bicanic, T. Invasive candidiasis in critical care: challenges and future directions. Intensive Care Med. 46, 2001–2014 (2020).

    Article  CAS  PubMed  Google Scholar 

  106. Michallet, M. et al. Antifungal stewardship in hematology: reflection of a multidisciplinary group of experts. Clin. Lymphoma Myeloma Leuk. 21, 35–45 (2021).

    Article  PubMed  Google Scholar 

  107. Kano, R. et al. Trichophyton indotineae sp. nov.: a new highly terbinafine-resistant anthropophilic dermatophyte species. Mycopathologia 185, 947–958 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Bienvenu, A. L. et al. A systematic review of interventions and performance measures for antifungal stewardship programmes. J. Antimicrob. Chemother. 73, 297–305 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Hart, E., Nguyen, M., Allen, M., Clark, C. M. & Jacobs, D. M. A systematic review of the impact of antifungal stewardship interventions in the United States. Ann. Clin. Microbiol. Antimicrob. 18, 24 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Rautemaa-Richardson, R. et al. Impact of a diagnostics-driven antifungal stewardship programme in a UK tertiary referral teaching hospital. J. Antimicrob. Chemother. 73, 3488–3495 (2018).

    CAS  PubMed  Google Scholar 

  111. Talento, A. F., Qualie, M., Cottom, L., Backx, M. & White, P. L. Lessons from an educational invasive fungal disease conference on hospital antifungal stewardship practices across the UK and Ireland. J. Fungi https://doi.org/10.3390/jof7100801 (2021).

    Article  Google Scholar 

  112. Whitney, L. et al. Effectiveness of an antifungal stewardship programme at a London teaching hospital 2010–16. J. Antimicrob. Chemother. 74, 234–241 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. Fung, M., Kim, J., Marty, F. M., Schwarzinger, M. & Koo, S. Meta-analysis and cost comparison of empirical versus pre-emptive antifungal strategies in hematologic malignancy patients with high-risk febrile neutropenia. PLoS ONE 10, e0140930 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Naggie, S. & Muir, A. J. Oral combination therapies for hepatitis C virus infection: successes, challenges, and unmet needs. Annu. Rev. Med. 68, 345–358 (2017).

    Article  CAS  PubMed  Google Scholar 

  115. Molloy, S. F. et al. Antifungal combinations for treatment of cryptococcal meningitis in Africa. N. Engl. J. Med. 378, 1004–1017 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Kirkpatrick, W. R., Perea, S., Coco, B. J. & Patterson, T. F. Efficacy of caspofungin alone and in combination with voriconazole in a guinea pig model of invasive aspergillosis. Antimicrob. Agents Chemother. 46, 2564–2568 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Petraitis, V. et al. Combination therapy in treatment of experimental pulmonary aspergillosis: synergistic interaction between an antifungal triazole and an echinocandin. J. Infect. Dis. 187, 1834–1843 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Petraitis, V. et al. Combination therapy with isavuconazole and micafungin for treatment of experimental invasive pulmonary aspergillosis. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.00305-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Marr, K. A. et al. Combination antifungal therapy for invasive aspergillosis: a randomized trial. Ann. Intern. Med. 162, 81–89 (2015).

    Article  PubMed  Google Scholar 

  120. Seyedmousavi, S. et al. Efficacy and pharmacodynamics of voriconazole combined with anidulafungin in azole-resistant invasive aspergillosis. J. Antimicrob. Chemother. 68, 385–393 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Armstrong-James, D. et al. Immunotherapeutic approaches to treatment of fungal diseases. Lancet Infect. Dis. 17, e393–e402 (2017).

    Article  CAS  PubMed  Google Scholar 

  122. Oliveira, L. V. N., Wang, R., Specht, C. A. & Levitz, S. M. Vaccines for human fungal diseases: close but still a long way to go. NPJ Vaccines 6, 33 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ambati, S. et al. Antifungal liposomes directed by dectin-2 offer a promising therapeutic option for pulmonary aspergillosis. mBio https://doi.org/10.1128/mBio.00030-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  124. International Chronic Granulomatous Disease Cooperative Study Group. A controlled trial of interferon gamma to prevent infection in chronic granulomatous disease. N. Engl. J. Med. 324, 509–516 (1991).

    Article  Google Scholar 

  125. de Sousa Mda, G. et al. Topical application of imiquimod as a treatment for chromoblastomycosis. Clin. Infect. Dis. 58, 1734–1737 (2014).

    Article  PubMed  CAS  Google Scholar 

  126. Gavino, C. et al. CARD9 deficiency and spontaneous central nervous system candidiasis: complete clinical remission with GM-CSF therapy. Clin. Infect. Dis. 59, 81–84 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kumaresan, P. R. et al. Bioengineering T cells to target carbohydrate to treat opportunistic fungal infection. Proc. Natl Acad. Sci. USA 111, 10660–10665 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Edwards, J. E. Jr. et al. A fungal immunotherapeutic vaccine (NDV-3A) for treatment of recurrent vulvovaginal candidiasis — a phase 2 randomized, double-blind, placebo-controlled trial. Clin. Infect. Dis. 66, 1928–1936 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Seed, P. C. The human mycobiome. Cold Spring Harb. Perspect. Med. 5, a019810 (2014).

    Article  PubMed  CAS  Google Scholar 

  130. Eades, C. P. & Armstrong-James, D. P. H. Invasive fungal infections in the immunocompromised host: mechanistic insights in an era of changing immunotherapeutics. Med. Mycol. 57, S307–S317 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. Hadfield, J. et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics 34, 4121–4123 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Argimon, S. et al. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. Microb. Genom. 2, e000093 (2016).

    PubMed  PubMed Central  Google Scholar 

  133. Stone, N. R. et al. Dynamic ploidy changes drive fluconazole resistance in human cryptococcal meningitis. J. Clin. Invest. 129, 999–1014 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Balaban, N. Q. et al. Definitions and guidelines for research on antibiotic persistence. Nat. Rev. Microbiol. 17, 441–448 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Selmecki, A., Forche, A. & Berman, J. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 313, 367–370 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Suwunnakorn, S., Wakabayashi, H. & Rustchenko, E. Chromosome 5 of human pathogen Candida albicans carries multiple genes for negative control of caspofungin and anidulafungin susceptibility. Antimicrob. Agents Chemother. 60, 7457–7467 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kwon-Chung, K. J. & Chang, Y. C. Aneuploidy and drug resistance in pathogenic fungi. PLoS Pathog. 8, e1003022 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ksiezopolska, E. et al. Narrow mutational signatures drive acquisition of multidrug resistance in the fungal pathogen Candida glabrata. Curr. Biol. 31, 5314–5326.e10 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Forche, A. et al. Stress alters rates and types of loss of heterozygosity in Candida albicans. mBio https://doi.org/10.1128/mBio.00129-11 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Healey, K. R. et al. Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance. Nat. Commun. 7, 11128 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Billmyre, R. B., Clancey, S. A. & Heitman, J. Natural mismatch repair mutations mediate phenotypic diversity and drug resistance in Cryptococcus deuterogattii. eLife https://doi.org/10.7554/eLife.28802 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Singh, A. et al. Absence of azole or echinocandin resistance in Candida glabrata isolates in india despite background prevalence of strains with defects in the DNA mismatch repair pathway. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.00195-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Boyce, K. J. et al. Mismatch repair of DNA replication errors contributes to microevolution in the pathogenic fungus Cryptococcus neoformans. mBio https://doi.org/10.1128/mBio.00595-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Gerstein, A. C. & Berman, J. Candida albicans genetic background influences mean and heterogeneity of drug responses and genome stability during evolution in fluconazole. mSphere https://doi.org/10.1128/mSphere.00480-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Liu, J., Gefen, O., Ronin, I., Bar-Meir, M. & Balaban, N. Q. Effect of tolerance on the evolution of antibiotic resistance under drug combinations. Science 367, 200–204 (2020).

    Article  CAS  PubMed  Google Scholar 

  146. Windels, E. M., Van den Bergh, B. & Michiels, J. Bacteria under antibiotic attack: different strategies for evolutionary adaptation. PLoS Pathog. 16, e1008431 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Moosa, M. Y., Alangaden, G. J., Manavathu, E. & Chandrasekar, P. H. Resistance to amphotericin B does not emerge during treatment for invasive aspergillosis. J. Antimicrob. Chemother. 49, 209–213 (2002).

    Article  CAS  PubMed  Google Scholar 

  148. Zarnowski, R. et al. Candida albicans biofilm-induced vesicles confer drug resistance through matrix biogenesis. PLoS Biol. 16, e2006872 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Smith, W. L. & Edlind, T. D. Histone deacetylase inhibitors enhance Candida albicans sensitivity to azoles and related antifungals: correlation with reduction in CDR and ERG upregulation. Antimicrob. Agents Chemother. 46, 3532–3539 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Li, X. et al. The Rpd3/Hda1 family of histone deacetylases regulates azole resistance in Candida albicans. J. Antimicrob. Chemother. 70, 1993–2003 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.C.F., D.C.S. and S.J.G. are fellows in the Canadian Institute for Advanced Research (CIFAR) ‘Fungal Kingdom’ programme. M.C.F. acknowledges funding from the Natural Environment Research Council (NERC) and the Medical Research Council (MRC) Centre for Global Infectious Disease Analysis (reference MR/R015600/1), jointly funded by the UK MRC and the UK Foreign, Commonwealth & Development Office (FCDO), under the MRC/FCDO Concordat agreement, and is also part of the EDCTP2 programme supported by the European Union. J.B. is supported by the Israel Science Foundation (#997/18) and European Research Council (ERC) Synergy Fungal Tolerance (#951475). A.W. and E.M.B. are supported by the MRC Centre for Medical Mycology (grant MR/N006364/2). S.J.G. is supported by the Biotechnology and Biological Sciences Research Council (BBSRC) (grant no. BB/PO18335) and the Bill and Melinda Gates Foundation. The contribution of B.Z. and P.E.V. is supported by the project ‘One health consequences of circularity. What lessons to learn from the saprophytic and human pathogenic fungus Aspergillus fumigatus?’ (project number GROEN.2019.002), which is financed by the Dutch Research Council (NWO). The authors thank L. Schouls, Centre for Infectious Diseases Research, National Institute for Public Health and the Environment (RIVM), for comments. This Review was conceived as a result of the Joint Programming Initiative on Antimicrobial Resistance (JPIAMR) Strategic Research and Innovation Agenda (SRIA) update consultation.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Matthew C. Fisher or Paul E. Verweij.

Ethics declarations

Competing interests

M.C.F. and P.E.V. receive speaker fees from Gilead Scientific. O.A.C. reports grants or contracts from Amplyx, Basilea, BMBF, Cidara, DZIF, EU-DG RTD (101037867), F2G Ltd, Gilead, Matinas, MedPace, MSD, Mundipharma, Octapharma, Pfizer and Scynexis; consulting fees from Amplyx, Biocon, Biosys, Cidara, Da Volterra, Gilead, Matinas, MedPace, Menarini, Molecular Partners, MSG-ERC, Noxxon, Octapharma, PSI, Scynexis and Seres; honoraria for lectures from Abbott, Al-Jazeera Pharmaceuticals, Astellas, Grupo Biotoscana/United Medical/Knight, Hikma, MedScape, MedUpdate, Merck/MSD, Mylan and Pfizer; payment for expert testimony from Cidara; participation on a Data Safety Monitoring Board or Advisory Board from Actelion, Allecra, Cidara, Entasis, IQVIA, Jannsen, MedPace, Paratek, PSI and Shionogi; a patent at the German Patent and Trade Mark Office (DE 10 2021 113 007.7); and other interests from DGHO, DGI, ECMM), ISHAM, MSG-ERC and Wiley. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Yong-Sun Bahn, David Perlin and Ilan Schwartz for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Antifungal tolerance

A characteristic of drug-susceptible genotypes to grow slowly at or above inhibitory drug concentrations. Characteristically, only a proportion of cells manifest tolerance.

Antifungal resistance

Defined as the ability to grow at antifungal drug concentrations above a defined antifungal susceptibility break point, normally (but not exclusively) owing to a defined causal molecular change following adaptation to drug exposure. It is expressed as a minimum inhibitory concentration (MIC).

Minimum inhibitory concentration

(MIC). The lowest concentration of an antifungal drug that inhibits fungal growth and, in the context of defined susceptibility break points, defines resistance.

Fungicides

Antifungal compounds used in the environment to inhibit fungal growth; widely used in agriculture, horticulture and timber industries as well as components of antifouling agents and paints.

Saprotrophic decay

Heterotrophic nutrition provided by extracellular digestion of organic matter in the environment.

Intrinsic resistance

Species of fungi that have not obviously evolved resistance in response to drug pressure.

Acquired resistance

Species of fungi that have evolved resistance in response to drug pressure.

Aneuploidies

Increase in the numbers of copies of chromosomes, often resulting in phenotypic changes to drug resistance and/or tolerance profiles.

Hypermutator

Genotypes that manifest accelerated mutation rates because of mutations to genes involved in nucleic acid repair mechanisms.

Fungistatic

Exposure to a chemical that halts the growth of, but does not kill, the fungus.

Antifungal susceptibility testing

An in vitro measure of susceptibility and resistance to the drug concentrations required to inhibit fungal growth, measured by the minimum inhibitory concentration (MIC).

Loop-mediated isothermal amplification

Enzymatic nucleic acid amplification at a single temperature.

Therapeutic drug monitoring

The pharmacological practice of measuring drug concentrations at specific intervals in order to optimize individual dosage regimens.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fisher, M.C., Alastruey-Izquierdo, A., Berman, J. et al. Tackling the emerging threat of antifungal resistance to human health. Nat Rev Microbiol 20, 557–571 (2022). https://doi.org/10.1038/s41579-022-00720-1

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41579-022-00720-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载