+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Natural products in drug discovery: advances and opportunities

Abstract

Natural products and their structural analogues have historically made a major contribution to pharmacotherapy, especially for cancer and infectious diseases. Nevertheless, natural products also present challenges for drug discovery, such as technical barriers to screening, isolation, characterization and optimization, which contributed to a decline in their pursuit by the pharmaceutical industry from the 1990s onwards. In recent years, several technological and scientific developments — including improved analytical tools, genome mining and engineering strategies, and microbial culturing advances — are addressing such challenges and opening up new opportunities. Consequently, interest in natural products as drug leads is being revitalized, particularly for tackling antimicrobial resistance. Here, we summarize recent technological developments that are enabling natural product-based drug discovery, highlight selected applications and discuss key opportunities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Outline of traditional bioactivity-guided isolation steps in natural product drug discovery.
Fig. 2: Applications of advanced analytical technologies empowering modern natural product-based drug discovery.
Fig. 3: Strategies for genome mining-driven discovery of natural products and natural product-like compounds.
Fig. 4: Application of advanced microbial culturing approaches to identify new natural products.
Fig. 5: Strategies to obtain natural product analogues with superior properties.

Similar content being viewed by others

References

  1. Atanasov, A. G. et al. Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol. Adv. 33, 1582–1614 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Harvey, A. L., Edrada-Ebel, R. & Quinn, R. J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 14, 111–129 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 79, 629–661 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Waltenberger, B., Mocan, A., Šmejkal, K., Heiss, E. H. E. H. & Atanasov, A. A. G. A. G. Natural products to counteract the epidemic of cardiovascular and metabolic disorders. Molecules 21, 807 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  5. Tintore, M., Vidal-Jordana, A. & Sastre-Garriga, J. Treatment of multiple sclerosis — success from bench to bedside. Nat. Rev. Neurol. 15, 53–58 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Feher, M. & Schmidt, J. M. Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J. Chem. Inf. Comput. Sci. 43, 218–227 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Barnes, E. C., Kumar, R. & Davis, R. A. The use of isolated natural products as scaffolds for the generation of chemically diverse screening libraries for drug discovery. Nat. Prod. Rep. 33, 372–381 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Li, J. W.-H. & Vederas, J. C. Drug discovery and natural products: end of an era or an endless frontier? Science 325, 161–165 (2009).

    Article  PubMed  CAS  Google Scholar 

  9. Clardy, J. & Walsh, C. Lessons from natural molecules. Nature 432, 829–837 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Lawson, A. D. G., MacCoss, M. & Heer, J. P. Importance of rigidity in designing small molecule drugs to tackle protein–protein interactions (PPIs) through stabilization of desired conformers. J. Med. Chem. 61, 4283–4289 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Doak, B. C., Over, B., Giordanetto, F. & Kihlberg, J. Oral druggable space beyond the rule of 5: insights from drugs and clinical candidates. Chem. Biol. 21, 1115–1142 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Shultz, M. D. Two decades under the influence of the rule of five and the changing properties of approved oral drugs. J. Med. Chem. 62, 1701–1714 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Lachance, H., Wetzel, S., Kumar, K. & Waldmann, H. Charting, navigating, and populating natural product chemical space for drug discovery. J. Med. Chem. 55, 5989–6001 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Henrich, C. J. & Beutler, J. A. Matching the power of high throughput screening to the chemical diversity of natural products. Nat. Prod. Rep. 30, 1284 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cragg, G. M., Schepartz, S. A., Suffness, M. & Grever, M. R. The taxol supply crisis. New NCI policies for handling the large-scale production of novel natural product anticancer and anti-HIV agents. J. Nat. Prod. 56, 1657–1668 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Harrison, C. Patenting natural products just got harder. Nat. Biotechnol. 32, 403–404 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Burton, G. & Evans-Illidge, E. A. Emerging R and D law: the Nagoya Protocol and its implications for researchers. ACS Chem. Biol. 9, 588–591 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Heffernan, O. Why a landmark treaty to stop ocean biopiracy could stymie research. Nature 580, 20–22 (2020).

    Article  PubMed  Google Scholar 

  19. Corson, T. W. & Crews, C. M. Molecular understanding and modern application of traditional medicines: triumphs and trials. Cell 130, 769–774 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moffat, J. G., Vincent, F., Lee, J. A., Eder, J. & Prunotto, M. Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat. Rev. Drug Discov. 16, 531–543 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Shi, Y., Inoue, H., Wu, J. C. & Yamanaka, S. Induced pluripotent stem cell technology: a decade of progress. Nat. Rev. Drug Discov. 16, 115–130 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Fellmann, C., Gowen, B. G., Lin, P.-C., Doudna, J. A. & Corn, J. E. Cornerstones of CRISPR–Cas in drug discovery and therapy. Nat. Rev. Drug Discov. 16, 89–100 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Schirle, M. & Jenkins, J. L. Identifying compound efficacy targets in phenotypic drug discovery. Drug Discov. Today 21, 82–89 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Wagenaar, M. M. Pre-fractionated microbial samples-the second generation natural products library at Wyeth. Molecules 13, 1406–1426 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wolfender, J.-L., Nuzillard, J.-M., van der Hooft, J. J. J., Renault, J.-H. & Bertrand, S. Accelerating metabolite identification in natural product research: toward an ideal combination of liquid chromatography–high-resolution tandem mass spectrometry and nmr profiling, in silico databases, and chemometrics. Anal. Chem. 91, 704–742 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Stuart, K. A., Welsh, K., Walker, M. C. & Edrada-Ebel, R. A. Metabolomic tools used in marine natural product drug discovery. Expert Opin. Drug Discov. 15, 499–522 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Allard, P.-M., Genta-Jouve, G. & Wolfender, J.-L. Deep metabolome annotation in natural products research: towards a virtuous cycle in metabolite identification. Curr. Opin. Chem. Biol. 36, 40–49 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Allard, P.-M. et al. Pharmacognosy in the digital era: shifting to contextualized metabolomics. Curr. Opin. Biotechnol. 54, 57–64 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hubert, J., Nuzillard, J.-M. & Renault, J.-H. Dereplication strategies in natural product research: How many tools and methodologies behind the same concept? Phytochem. Rev. 16, 55–95 (2017).

    Article  CAS  Google Scholar 

  30. Liu, X. & Locasale, J. W. Metabolomics: a primer. Trends Biochem. Sci. 42, 274–284 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Eugster, P. J. et al. Ultra high pressure liquid chromatography for crude plant extract profiling. J. AOAC Int. 94, 51–70 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Stavrianidi, A. A classification of liquid chromatography mass spectrometry techniques for evaluation of chemical composition and quality control of traditional medicines. J. Chromatogr. A 1609, 460501 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Wolfender, J.-L., Marti, G., Thomas, A. & Bertrand, S. Current approaches and challenges for the metabolite profiling of complex natural extracts. J. Chromatogr. A 1382, 136–164 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Tahtah, Y. et al. High-resolution PTP1B inhibition profiling combined with high-performance liquid chromatography–high-resolution mass spectrometry–solid-phase extraction–nuclear magnetic resonance spectroscopy: proof-of-concept and antidiabetic constituents in crude extract of Eremophila lucida. Fitoterapia 110, 52–58 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Chu, C. et al. Antidiabetic constituents of Dendrobium officinale as determined by high-resolution profiling of radical scavenging and α-glucosidase and α-amylase inhibition combined with HPLC-PDA-HRMS-SPE-NMR analysis. Phytochem. Lett. 31, 47–52 (2019).

    Article  CAS  Google Scholar 

  36. Garcia-Perez, I. et al. Identifying unknown metabolites using NMR-based metabolic profiling techniques. Nat. Protoc. 15, 2538–2567 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Giavalisco, P. et al. High-resolution direct infusion-based mass spectrometry in combination with whole 13C metabolome isotope labeling allows unambiguous assignment of chemical sum formulas. Anal. Chem. 80, 9417–9425 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Covington, B. C., McLean, J. A. & Bachmann, B. O. Comparative mass spectrometry-based metabolomics strategies for the investigation of microbial secondary metabolites. Nat. Prod. Rep. 34, 6–24 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fontana, A., Iturrino, L., Corens, D. & Crego, A. L. Automated open-access liquid chromatography high resolution mass spectrometry to support drug discovery projects. J. Pharm. Biomed. Anal. 178, 112908 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Kind, T. et al. Identification of small molecules using accurate mass MS/MS search. Mass. Spectrom. Rev. 37, 513–532 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, M. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang, J. Y. et al. Molecular networking as a dereplication strategy. J. Nat. Prod. 76, 1686–1699 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Allen, F., Greiner, R. & Wishart, D. Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification. Metabolomics 11, 98–110 (2015).

    Article  CAS  Google Scholar 

  44. Allard, P.-M. et al. Integration of molecular networking and in-silico MS/MS fragmentation for natural products dereplication. Anal. Chem. 88, 3317–3323 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. da Silva, R. R. et al. Propagating annotations of molecular networks using in silico fragmentation. PLoS Comput. Biol. 14, e1006089 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Randazzo, G. M. et al. Prediction of retention time in reversed-phase liquid chromatography as a tool for steroid identification. Anal. Chim. Acta 916, 8–16 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Zhou, Z., Xiong, X. & Zhu, Z.-J. MetCCS predictor: a web server for predicting collision cross-section values of metabolites in ion mobility-mass spectrometry based metabolomics. Bioinformatics 33, 2235–2237 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Rutz, A. et al. Taxonomically informed scoring enhances confidence in natural products annotation. Front. Plant. Sci. 10, 1329 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Guijas, C. et al. METLIN: a technology platform for identifying knowns and unknowns. Anal. Chem. 90, 3156–3164 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Aksenov, A. A., da Silva, R., Knight, R., Lopes, N. P. & Dorrestein, P. C. Global chemical analysis of biology by mass spectrometry. Nat. Rev. Chem. 1, 0054 (2017).

    Article  CAS  Google Scholar 

  51. Fox Ramos, A. E. et al. CANPA: computer-assisted natural products anticipation. Anal. Chem. 91, 11247–11252 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Wolfender, J.-L., Litaudon, M., Touboul, D. & Queiroz, E. F. Innovative omics-based approaches for prioritisation and targeted isolation of natural products – new strategies for drug discovery. Nat. Prod. Rep. 36, 855–868 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Graziani, V. et al. Metabolomic approach for a rapid identification of natural products with cytotoxic activity against human colorectal cancer cells. Sci. Rep. 8, 5309 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Grienke, U. et al. 1H NMR-MS-based heterocovariance as a drug discovery tool for fishing bioactive compounds out of a complex mixture of structural analogues. Sci. Rep. 9, 11113 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Aligiannis, N. et al. Heterocovariance based metabolomics as a powerful tool accelerating bioactive natural product identification. ChemistrySelect 1, 2531–2535 (2016).

    Article  CAS  Google Scholar 

  56. Acharya, D. et al. Omics technologies to understand activation of a biosynthetic gene cluster in Micromonospora sp. WMMB235: deciphering keyicin biosynthesis. ACS Chem. Biol. 14, 1260–1270 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schulze, C. J. et al. ‘Function-first’ lead discovery: mode of action profiling of natural product libraries using image-based screening. Chem. Biol. 20, 285–295 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kurita, K. L., Glassey, E. & Linington, R. G. Integration of high-content screening and untargeted metabolomics for comprehensive functional annotation of natural product libraries. Proc. Natl Acad. Sci. USA 112, 11999–12004 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Earl, D. C. et al. Discovery of human cell selective effector molecules using single cell multiplexed activity metabolomics. Nat. Commun. 9, 39 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Wishart, D. S. NMR metabolomics: a look ahead. J. Magn. Reson. 306, 155–161 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Berlinck, R. G. S. et al. Approaches for the isolation and identification of hydrophilic, light-sensitive, volatile and minor natural products. Nat. Prod. Rep. 36, 981–1004 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Hilton, B. D. & Martin, G. E. Investigation of the experimental limits of small-sample heteronuclear 2D NMR. J. Nat. Prod. 73, 1465–1469 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Sultan, S. et al. Evolving trends in the dereplication of natural product extracts. 3: Further lasiodiplodins from Lasiodiplodia theobromae, an endophyte from Mapania kurzii. Tetrahedron Lett. 55, 453–455 (2014).

    Article  CAS  Google Scholar 

  64. Jones, C. G. et al. The CryoEM method MicroED as a powerful tool for small molecule structure determination. ACS Cent. Sci. 4, 1587–1592 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ting, C. P. et al. Use of a scaffold peptide in the biosynthesis of amino acid-derived natural products. Science 365, 280–284 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ganesh, T. et al. Evaluation of the tubulin-bound paclitaxel conformation: synthesis, biology, and SAR studies of C-4 to C-3′ bridged paclitaxel analogues. J. Med. Chem. 50, 713–725 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Choules, M. P. et al. Residual complexity does impact organic chemistry and drug discovery: the case of rufomyazine and rufomycin. J. Org. Chem. 83, 6664–6672 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ziemert, N., Alanjary, M. & Weber, T. The evolution of genome mining in microbes - a review. Nat. Prod. Rep. 33, 988–1005 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Viehrig, K. et al. Structure and biosynthesis of crocagins: polycyclic posttranslationally modified ribosomal peptides from Chondromyces crocatus. Angew. Chem. Int. Ed. Engl. 56, 7407–7410 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Surup, F. et al. Crocadepsins-depsipeptides from the myxobacterium Chondromyces crocatus found by a genome mining approach. ACS Chem. Biol. 13, 267–272 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Kayrouz, C. M., Zhang, Y., Pham, T. M. & Ju, K. S. Genome mining reveals the phosphonoalamide natural products and a new route in phosphonic acid biosynthesis. ACS Chem. Biol. 15, 1921–1929 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Laureti, L. et al. Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens. Proc. Natl Acad. Sci. USA 108, 6258–6263 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Weber, T. & Kim, H. U. The secondary metabolite bioinformatics portal: Computational tools to facilitate synthetic biology of secondary metabolite production. Synth. Syst. Biotechnol. 1, 69–79 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Navarro-Muñoz, J. C. et al. A computational framework to explore large-scale biosynthetic diversity. Nat. Chem. Biol. 16, 60–68 (2020).

    Article  PubMed  CAS  Google Scholar 

  75. Hoffmann, T. et al. Correlating chemical diversity with taxonomic distance for discovery of natural products in myxobacteria. Nat. Commun. 9, 803 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Helaly, S. E., Thongbai, B. & Stadler, M. Diversity of biologically active secondary metabolites from endophytic and saprotrophic fungi of the ascomycete order Xylariales. Nat. Prod. Rep. 35, 992–1014 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Dalinova, A. et al. Isolation and bioactivity of secondary metabolites from solid culture of the fungus, Alternaria sonchi. Biomolecules 10, 81 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  78. Zerikly, M. & Challis, G. L. Strategies for the discovery of new natural products by genome mining. ChemBioChem 10, 625–633 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Culp, E. J. et al. Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling. Nature 578, 582–587 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Zhang, H., Boghigian, B. A., Armando, J. & Pfeifer, B. A. Methods and options for the heterologous production of complex natural products. Nat. Prod. Rep. 28, 125–151 (2011).

    Article  PubMed  Google Scholar 

  81. Anyaogu, D. C. & Mortensen, U. H. Heterologous production of fungal secondary metabolites in aspergilli. Front. Microbiol. 6, 77 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Sucipto, H., Pogorevc, D., Luxenburger, E., Wenzel, S. C. & Müller, R. Heterologous production of myxobacterial α-pyrone antibiotics in Myxococcus xanthus. Metab. Eng. 44, 160–170 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Nora, L. C. et al. The art of vector engineering: towards the construction of next-generation genetic tools. Microb. Biotechnol. 12, 125–147 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Bok, J. W. et al. Fungal artificial chromosomes for mining of the fungal secondary metabolome. BMC Genomics 16, 343 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Clevenger, K. D. et al. A scalable platform to identify fungal secondary metabolites and their gene clusters. Nat. Chem. Biol. 13, 895–901 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mao, D., Okada, B. K., Wu, Y., Xu, F. & Seyedsayamdost, M. R. Recent advances in activating silent biosynthetic gene clusters in bacteria. Curr. Opin. Microbiol. 45, 156–163 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rutledge, P. J. & Challis, G. L. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat. Rev. Microbiol. 13, 509–523 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Yamanaka, K. et al. Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. Proc. Natl Acad. Sci. 111, 1957–1962 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sidda, J. D. et al. Discovery of a family of γ-aminobutyrate ureas via rational derepression of a silent bacterial gene cluster. Chem. Sci. 5, 86–89 (2014).

    Article  CAS  Google Scholar 

  90. Wang, B., Guo, F., Dong, S.-H. & Zhao, H. Activation of silent biosynthetic gene clusters using transcription factor decoys. Nat. Chem. Biol. 15, 111–114 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Zhang, M. M. et al. CRISPR–Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat. Chem. Biol. 13, 607–609 (2017).

    Article  CAS  Google Scholar 

  92. Culp, E. J. et al. Hidden antibiotics in actinomycetes can be identified by inactivation of gene clusters for common antibiotics. Nat. Biotechnol. 37, 1149–1154 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Hover, B. M. et al. Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens. Nat. Microbiol. 3, 415–422 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chu, J. et al. Discovery of MRSA active antibiotics using primary sequence from the human microbiome. Nat. Chem. Biol. 12, 1004–1006 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kersten, R. D. & Weng, J.-K. Gene-guided discovery and engineering of branched cyclic peptides in plants. Proc. Natl Acad. Sci. USA 115, E10961–E10969 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dutertre, S. et al. Deep venomics reveals the mechanism for expanded peptide diversity in cone snail venom. Mol. Cell. Proteom. 12, 312–329 (2013).

    Article  CAS  Google Scholar 

  97. Wilson, M. C. et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506, 58–62 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Mori, T. et al. Single-bacterial genomics validates rich and varied specialized metabolism of uncultivated Entotheonella sponge symbionts. Proc. Natl Acad. Sci. USA 115, 1718–1723 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rath, C. M. et al. Meta-omic characterization of the marine invertebrate microbial consortium that produces the chemotherapeutic natural product ET-743. ACS Chem. Biol. 6, 1244–1256 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Newman, D. J. Are microbial endophytes the ‘actual’ producers of bioactive antitumor agents? Trends Cancer 4, 662–670 (2018).

    Article  CAS  PubMed  Google Scholar 

  101. Helfrich, E. J. N. et al. Bipartite interactions, antibiotic production and biosynthetic potential of the Arabidopsis leaf microbiome. Nat. Microbiol. 3, 909–919 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yan, F. et al. Biosynthesis and heterologous production of vioprolides: rational biosynthetic engineering and unprecedented 4-methylazetidinecarboxylic acid formation. Angew. Chem. Int. Ed. 57, 8754–8759 (2018).

    Article  CAS  Google Scholar 

  103. Tu, Q. et al. Genetic engineering and heterologous expression of the disorazol biosynthetic gene cluster via Red/ET recombineering. Sci. Rep. 6, 21066 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Song, C. et al. Enhanced heterologous spinosad production from a 79-kb synthetic multioperon assembly. ACS Synth. Biol. 8, 137–147 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Wlodek, A. et al. Diversity oriented biosynthesis via accelerated evolution of modular gene clusters. Nat. Commun. 8, 1206 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Bozhüyük, K. A. J. et al. De novo design and engineering of non-ribosomal peptide synthetases. Nat. Chem. 10, 275–281 (2018).

    Article  PubMed  CAS  Google Scholar 

  107. Bozhüyük, K. A. J. et al. Modification and de novo design of non-ribosomal peptide synthetases using specific assembly points within condensation domains. Nat. Chem. 11, 653–661 (2019).

    Article  PubMed  CAS  Google Scholar 

  108. Awakawa, T. et al. Reprogramming of the antimycin NRPS-PKS assembly lines inspired by gene evolution. Nat. Commun. 9, 3534 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Masschelein, J. et al. A dual transacylation mechanism for polyketide synthase chain release in enacyloxin antibiotic biosynthesis. Nat. Chem. 11, 906–912 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kosol, S. et al. Structural basis for chain release from the enacyloxin polyketide synthase. Nat. Chem. 11, 913–923 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gregory, M. A. et al. Structure guided design of improved anti-proliferative rapalogs through biosynthetic medicinal chemistry. Chem. Sci. 4, 1046–1052 (2013).

    Article  CAS  Google Scholar 

  112. Méndez, C., González-Sabín, J., Morís, F. & Salas, J. A. Expanding the chemical diversity of the antitumoral compound mithramycin by combinatorial biosynthesis and biocatalysis: the quest for mithralogs with improved therapeutic window. Planta Med. 81, 1326–1338 (2015).

    Article  PubMed  CAS  Google Scholar 

  113. Hindra et al. Genome mining of Streptomyces mobaraensis DSM40847 as a bleomycin producer providing a biotechnology platform to engineer designer bleomycin analogues. Org. Lett. 19, 1386–1389 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Brautaset, T. et al. Improved antifungal polyene macrolides via engineering of the nystatin biosynthetic genes in Streptomyces noursei. Chem. Biol. 15, 1198–1206 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Preobrazhenskaya, M. N. et al. Synthesis and study of the antifungal activity of new mono- and disubstituted derivatives of a genetically engineered polyene antibiotic 28,29-didehydronystatin A1 (S44HP). J. Antibiot. 63, 55–64 (2010).

    Article  CAS  Google Scholar 

  116. Tevyashova, A. N. et al. Structure-antifungal activity relationships of polyene antibiotics of the amphotericin B group. Antimicrob. Agents Chemother. 57, 3815–3822 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lewis, K., Epstein, S., D’Onofrio, A. & Ling, L. L. Uncultured microorganisms as a source of secondary metabolites. J. Antibiot. 63, 468–476 (2010).

    Article  CAS  Google Scholar 

  118. Schiewe, H.-J. & Zeeck, A. Cineromycins, γ-butyrolactones and ansamycins by analysis of the secondary metabolite pattern created by a single strain of Strepomyces. J. Antibiot. 52, 635–642 (1999).

    Article  CAS  Google Scholar 

  119. Zähner, H. Some aspects of antibiotics research. Angew. Chem. Int. Ed. Engl. 16, 687–694 (1977).

    Article  PubMed  Google Scholar 

  120. Newman, D. Screening and identification of novel biologically active natural compounds. F1000Research 6, 783 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Hussain, A. et al. Novel bioactive molecules from Lentzea violacea strain AS 08 using one strain-many compounds (OSMAC) approach. Bioorg. Med. Chem. Lett. 27, 2579–2582 (2017).

    Article  CAS  PubMed  Google Scholar 

  122. Hemphill, C. F. P. et al. OSMAC approach leads to new fusarielin metabolites from Fusarium tricinctum. J. Antibiot. 70, 726–732 (2017).

    Article  CAS  Google Scholar 

  123. Vartoukian, S. R., Palmer, R. M. & Wade, W. G. Strategies for culture of ‘unculturable’ bacteria. FEMS Microbiol. Lett. 309, 1–7 (2010).

    CAS  PubMed  Google Scholar 

  124. Moussa, M. et al. Co-culture of the fungus Fusarium tricinctum with Streptomyces lividans induces production of cryptic naphthoquinone dimers. RSC Adv. 9, 1491–1500 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Abdel-Razek, A. S., Hamed, A., Frese, M., Sewald, N. & Shaaban, M. Penicisteroid C: new polyoxygenated steroid produced by co-culturing of Streptomyces piomogenus with Aspergillus niger. Steroids 138, 21–25 (2018).

    Article  CAS  PubMed  Google Scholar 

  126. D’Onofrio, A. et al. Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem. Biol. 17, 254–264 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Van Arnam, E. B., Currie, C. R. & Clardy, J. Defense contracts: molecular protection in insect-microbe symbioses. Chem. Soc. Rev. 47, 1638–1651 (2018).

    Article  PubMed  Google Scholar 

  128. Molloy, E. M. & Hertweck, C. Antimicrobial discovery inspired by ecological interactions. Curr. Opin. Microbiol. 39, 121–127 (2017).

    Article  PubMed  Google Scholar 

  129. Tobias, N. J., Shi, Y. M. & Bode, H. B. Refining the natural product repertoire in entomopathogenic bacteria. Trends Microbiology 26, 833–840 (2018).

    Article  CAS  Google Scholar 

  130. Imai, Y. et al. A new antibiotic selectively kills Gram-negative pathogens. Nature 576, 459–464 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bode, E. et al. Biosynthesis and function of simple amides in Xenorhabdus doucetiae. Environ. Microbiol. 19, 4564–4575 (2017).

    Article  CAS  PubMed  Google Scholar 

  132. Crawford, J. M., Kontnik, R. & Clardy, J. Regulating alternative lifestyles in entomopathogenic bacteria. Curr. Biol. 20, 69–74 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zengler, K. et al. Cultivating the uncultured. Proc. Natl Acad. Sci. USA 99, 15681–15686 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Nichols, D. et al. Use of ichip for high-throughput in situ cultivation of ‘uncultivable’ microbial species. Appl. Environ. Microbiol. 76, 2445–2450 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ling, L. L. et al. A new antibiotic kills pathogens without detectable resistance. Nature 517, 455–459 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Homma, T. et al. Dual targeting of cell wall precursors by teixobactin leads to cell lysis. Antimicrob. Agents Chemother. 60, 6510–6517 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pham, V. H. T. & Kim, J. Cultivation of unculturable soil bacteria. Trends Biotechnol. 30, 475–484 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Derewacz, D. K., Covington, B. C., McLean, J. A. & Bachmann, B. O. Mapping microbial response metabolomes for induced natural product discovery. ACS Chem. Biol. 10, 1998–2006 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lagier, J. C. et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat. Microbiol. 1, 16203 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Terekhov, S. S. et al. Microfluidic droplet platform for ultrahigh-throughput single-cell screening of biodiversity. Proc. Natl Acad. Sci. USA 114, 2550–2555 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Challinor, V. L. & Bode, H. B. Bioactive natural products from novel microbial sources. Ann. NY Acad. Sci. 1354, 82–97 (2015).

    Article  PubMed  Google Scholar 

  142. Pidot, S. J., Coyne, S., Kloss, F. & Hertweck, C. Antibiotics from neglected bacterial sources. Int. J. Med. Microbiol. 304, 14–22 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Lincke, T., Behnken, S., Ishida, K., Roth, M. & Hertweck, C. Closthioamide: an unprecedented polythioamide antibiotic from the strictly anaerobic bacterium Clostridium cellulolyticum. Angew. Chem. Int. Ed. 49, 2011–2013 (2010).

    Article  CAS  Google Scholar 

  144. Haeckl, F. P. J. et al. A selective genome-guided method for environmental Burkholderia isolation. J. Ind. Microbiol. Biotechnol. 46, 345–362 (2019).

    Article  CAS  PubMed  Google Scholar 

  145. Cross, K. L. et al. Targeted isolation and cultivation of uncultivated bacteria by reverse genomics. Nat. Biotechnol. 37, 1314–1321 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Vlachou, P. et al. Innovative approach to sustainable marine invertebrate chemistry and a scale-up technology for open marine ecosystems. Mar. Drugs 16, 152 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  147. Zainal-Abidin, M. H., Hayyan, M., Hayyan, A. & Jayakumar, N. S. New horizons in the extraction of bioactive compounds using deep eutectic solvents: a review. Anal. Chim. Acta 979, 1–23 (2017).

    Article  CAS  PubMed  Google Scholar 

  148. Dai, Y., van Spronsen, J., Witkamp, G.-J., Verpoorte, R. & Choi, Y. H. Ionic liquids and deep eutectic solvents in natural products research: mixtures of solids as extraction solvents. J. Nat. Prod. 76, 2162–2173 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Nemes, P. & Vertes, A. Ambient mass spectrometry for in vivo local analysis and in situ molecular tissue imaging. Trends Analyt. Chem. 34, 22–34 (2012).

    Article  CAS  Google Scholar 

  150. Pasquini, C. Near infrared spectroscopy: a mature analytical technique with new perspectives–a review. Anal. Chim. Acta 1026, 8–36 (2018).

    Article  CAS  PubMed  Google Scholar 

  151. Hutchings, M., Truman, A. & Wilkinson, B. Antibiotics: past, present and future. Curr. Opin. Microbiol. 51, 72–80 (2019).

    Article  CAS  PubMed  Google Scholar 

  152. Rossiter, S. E., Fletcher, M. H. & Wuest, W. M. Natural products as platforms to overcome antibiotic resistance. Chem. Rev. 117, 12415–12474 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zipperer, A. et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature 535, 511–516 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Lešnik, U. et al. Construction of a new class of tetracycline lead structures with potent antibacterial activity through biosynthetic engineering. Angew. Chem. Int. Ed. Engl. 54, 3937–3940 (2015).

    Article  PubMed  CAS  Google Scholar 

  155. Kling, A. et al. Antibiotics. Targeting DnaN for tuberculosis therapy using novel griselimycins. Science 348, 1106–1112 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Shaeer, K. M., Zmarlicka, M. T., Chahine, E. B., Piccicacco, N. & Cho, J. C. Plazomicin: a next-generation aminoglycoside. Pharmacotherapy 39, 77–93 (2019).

    Article  CAS  PubMed  Google Scholar 

  157. Smith, P. A. et al. Optimized arylomycins are a new class of Gram-negative antibiotics. Nature 561, 189–194 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Dickey, S. W., Cheung, G. Y. C. & Otto, M. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat. Rev. Drug Discov. 16, 457–471 (2017).

    Article  CAS  PubMed  Google Scholar 

  159. Park, S. R. et al. Discovery of cahuitamycins as biofilm inhibitors derived from a convergent biosynthetic pathway. Nat. Commun. 7, 10710 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Mann, J. Natural products in cancer chemotherapy: past, present and future. Nat. Rev. Cancer 2, 143–148 (2002).

    Article  CAS  PubMed  Google Scholar 

  161. Beck, A., Goetsch, L., Dumontet, C. & Corvaïa, N. Strategies and challenges for the next generation of antibody–drug conjugates. Nat. Rev. Drug Discov. 16, 315–337 (2017).

    Article  CAS  PubMed  Google Scholar 

  162. Pereira, R. B. et al. Marine-derived anticancer agents: clinical benefits, innovative mechanisms, and new targets. Mar. Drugs 17 (2019).

  163. Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 83, 770–803 (2020).

    Article  CAS  PubMed  Google Scholar 

  164. Galon, J. & Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 18, 197–218 (2019).

    Article  CAS  PubMed  Google Scholar 

  165. Menger, L. et al. Cardiac glycosides exert anticancer effects by inducing immunogenic cell death. Sci. Transl. Med. 4, 143ra99 (2012).

    Article  PubMed  CAS  Google Scholar 

  166. Galluzzi, L., Buqué, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2017).

    Article  CAS  PubMed  Google Scholar 

  167. Diederich, M. Natural compound inducers of immunogenic cell death. Arch. Pharm. Res. 42, 629–645 (2019).

    Article  CAS  PubMed  Google Scholar 

  168. Radogna, F., Dicato, M. & Diederich, M. Natural modulators of the hallmarks of immunogenic cell death. Biochem. Pharmacol. 162, 55–70 (2019).

    Article  CAS  PubMed  Google Scholar 

  169. Schmidt, B. M., Ribnicky, D. M., Lipsky, P. E. & Raskin, I. Revisiting the ancient concept of botanical therapeutics. Nat. Chem. Biol. 3, 360–366 (2007).

    Article  CAS  PubMed  Google Scholar 

  170. Schmidt, B. et al. A natural history of botanical therapeutics. Metabolism 57, S3–S9 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kellogg, J. J. et al. Comparison of metabolomics approaches for evaluating the variability of complex botanical preparations: green tea (Camellia sinensis) as a case study. J. Nat. Prod. 80, 1457–1466 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Marchesi, J. R. et al. The gut microbiota and host health: a new clinical frontier. Gut 65, 330–339 (2016).

    Article  PubMed  Google Scholar 

  173. Abdollahi-Roodsaz, S., Abramson, S. B. & Scher, J. U. The metabolic role of the gut microbiota in health and rheumatic disease: mechanisms and interventions. Nat. Rev. Rheumatol. 12, 446–455 (2016).

    Article  CAS  PubMed  Google Scholar 

  174. Lynch, S. V. & Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375, 2369–2379 (2016).

    Article  CAS  PubMed  Google Scholar 

  175. Scherlach, K. & Hertweck, C. Mediators of mutualistic microbe-microbe interactions. Nat. Prod. Rep. 35, 303–308 (2018).

    Article  CAS  PubMed  Google Scholar 

  176. Modi, S. R., Collins, J. J. & Relman, D. A. Antibiotics and the gut microbiota. J. Clin. Invest. 124, 4212–4218 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Peterson, C. T. et al. Effects of turmeric and curcumin dietary supplementation on human gut microbiota: a double-blind, randomized, placebo-controlled pilot study. J Evid. Based Integr. Med. 23, 2515690X18790725 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Eid, H. M. et al. Significance of microbiota in obesity and metabolic diseases and the modulatory potential by medicinal plant and food ingredients. Front. Pharmacol. 8, (2017).

  179. Valencia, P. M., Richard, M., Brock, J. & Boglioli, E. The human microbiome: opportunity or hype? Nat. Rev. Drug Discov. 16, 823–824 (2017).

    Article  CAS  PubMed  Google Scholar 

  180. Sorokina, M. & Steinbeck, C. Review on natural products databases: Where to find data in 2020. J. Cheminform. 12, 20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Schneider, G. et al. Deorphaning the macromolecular targets of the natural anticancer compound doliculide. Angew. Chem. Int. Ed. 55, 12408–12411 (2016).

    Article  CAS  Google Scholar 

  182. Palazzotto, E. & Weber, T. Omics and multi-omics approaches to study the biosynthesis of secondary metabolites in microorganisms. Curr. Opin. Microbiol. 45, 109–116 (2018).

    Article  CAS  PubMed  Google Scholar 

  183. Dias, T., Gaudêncio, S. P. & Pereira, F. A computer-driven approach to discover natural product leads for methicillin-resistant staphylococcus aureus infection therapy. Mar. Drugs 17, 16 (2019).

    Article  CAS  Google Scholar 

  184. Boström, J., Brown, D. G., Young, R. J. & Keserü, G. M. Expanding the medicinal chemistry synthetic toolbox. Nat. Rev. Drug Discov. 17, 709–727 (2018).

    Article  PubMed  CAS  Google Scholar 

  185. Zhao, X. et al. A novel drug discovery strategy inspired by traditional medicine philosophies. Science 347, S38–S40 (2015).

    Google Scholar 

  186. Liao, S. et al. Tanshinol borneol ester, a novel synthetic small molecule angiogenesis stimulator inspired by botanical formulations for angina pectoris. Br. J. Pharmacol. 176, 3143–3160 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Bai, Y. et al. Polygala tenuifolia-Acori tatarinowii herbal pair as an inspiration for substituted cinnamic α-asaronol esters: design, synthesis, anticonvulsant activity, and inhibition of lactate dehydrogenase study. Eur. J. Med. Chem. 183, 111650 (2019).

    Article  CAS  PubMed  Google Scholar 

  188. Seiple, I. B. et al. A platform for the discovery of new macrolide antibiotics. Nature 533, 338–345 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Wang, L. et al. Novel interactomics approach identifies ABCA1 as direct target of evodiamine, which increases macrophage cholesterol efflux. Sci. Rep. 8, 11061 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Chang, J., Kim, Y. & Kwon, H. J. Advances in identification and validation of protein targets of natural products without chemical modification. Nat. Prod. Rep. 33, 719–730 (2016).

    Article  CAS  PubMed  Google Scholar 

  191. Adhikari, J. & Fitzgerald, M. C. SILAC-pulse proteolysis: a mass spectrometry-based method for discovery and cross-validation in proteome-wide studies of ligand binding. J. Am. Soc. Mass. Spectrom. 25, 2073–2083 (2014).

    Article  CAS  PubMed  Google Scholar 

  192. Gregori-Puigjane, E. et al. Identifying mechanism-of-action targets for drugs and probes. Proc. Natl Acad. Sci. USA 109, 11178–11183 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Yñigez-Gutierrez, A. E. & Bachmann, B. O. Fixing the unfixable: the art of optimizing natural products for human medicine. J. Med. Chem. 62, 8412–8428 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Markley, J. L. & Wencewicz, T. A. Tetracycline-inactivating enzymes. Front. Microbiol. 9, 1058 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Wu, F. et al. Chrysomycin A derivatives for the treatment of multi-drug-resistant tuberculosis. ACS Cent. Sci. 6, 928–938 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Dayalan Naidu, S., Kostov, R. V. & Dinkova-Kostova, A. T. Transcription factors Hsf1 and Nrf2 engage in crosstalk for cytoprotection. Trends Pharmacol. Sci. 36, 6–14 (2015).

    Article  CAS  PubMed  Google Scholar 

  197. Hayes, J. D. & Dinkova-Kostova, A. T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci. 39, 199–218 (2014).

    Article  CAS  PubMed  Google Scholar 

  198. Mills, E. L. et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113–117 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Murphy, K. E. & Park, J. J. Can co-activation of Nrf2 and neurotrophic signaling pathway slow Alzheimer’s disease? Int. J. Mol. Sci. 18, 1168 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  200. Cuadrado, A. et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat. Rev. Drug Discov. 18, 295–317 (2019).

    Article  CAS  PubMed  Google Scholar 

  201. Linker, R. A. et al. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 134, 678–692 (2011).

    Article  PubMed  Google Scholar 

  202. Singh, K. et al. Sulforaphane treatment of autism spectrum disorder (ASD). Proc. Natl Acad. Sci. USA 111, 15550–15555 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Spencer, S. R., Wilczak, C. A. & Talalay, P. Induction of glutathione transferases and NAD(P)H:quinone reductase by fumaric acid derivatives in rodent cells and tissues. Cancer Res. 50, 7871–7875 (1990).

    CAS  PubMed  Google Scholar 

  204. Soušek, J. et al. Alkaloids and organic acids content of eight Fumaria species. Phytochem. Anal. 10, 6–11 (1999).

    Article  Google Scholar 

  205. Linker, R. A. & Haghikia, A. Dimethyl fumarate in multiple sclerosis: latest developments, evidence and place in therapy. Ther. Adv. Chronic Dis. 7, 198–207 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Fox, R. J. et al. Efficacy and tolerability of delayed-release dimethyl fumarate in Black, Hispanic, and Asian patients with relapsing-remitting multiple sclerosis: post hoc integrated analysis of DEFINE and CONFIRM. Neurol. Ther. 6, 175–187 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Fernández, Ó. et al. Efficacy and safety of delayed-release dimethyl fumarate for relapsing-remitting multiple sclerosis in prior interferon users: an integrated analysis of DEFINE and CONFIRM. Clin. Ther. 39, 1671–1679 (2017).

    Article  PubMed  CAS  Google Scholar 

  208. Zhang, Y., Talalay, P., Cho, C. G. & Posner, G. H. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc. Natl Acad. Sci. USA 89, 2399–2403 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Dinkova-Kostova, A. T. et al. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc. Natl Acad. Sci. USA 99, 11908–11913 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Morroni, F. et al. Neuroprotective effect of sulforaphane in 6-hydroxydopamine-lesioned mouse model of Parkinson’s disease. Neurotoxicology 36, 63–71 (2013).

    Article  CAS  PubMed  Google Scholar 

  211. Liu, Y. et al. Sulforaphane enhances proteasomal and autophagic activities in mice and is a potential therapeutic reagent for Huntington’s disease. J. Neurochem. 129, 539–547 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Kim, H. V. et al. Amelioration of Alzheimer’s disease by neuroprotective effect of sulforaphane in animal model. Amyloid 20, 7–12 (2013).

    Article  CAS  PubMed  Google Scholar 

  213. Zhao, J., Moore, A. N., Clifton, G. L. & Dash, P. K. Sulforaphane enhances aquaporin-4 expression and decreases cerebral edema following traumatic brain injury. J. Neurosci. Res. 82, 499–506 (2005).

    Article  CAS  PubMed  Google Scholar 

  214. Benedict, A. L. et al. Neuroprotective effects of sulforaphane after contusive spinal cord injury. J. Neurotrauma 29, 2576–2586 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Alfieri, A. et al. Sulforaphane preconditioning of the Nrf2/HO-1 defense pathway protects the cerebral vasculature against blood-brain barrier disruption and neurological deficits in stroke. Free Radic. Biol. Med. 65, 1012–1022 (2013).

    Article  CAS  PubMed  Google Scholar 

  216. Wu, S. et al. Sulforaphane produces antidepressant- and anxiolytic-like effects in adult mice. Behav. Brain Res. 301, 55–62 (2016).

    Article  CAS  PubMed  Google Scholar 

  217. Li, B. et al. Sulforaphane ameliorates the development of experimental autoimmune encephalomyelitis by antagonizing oxidative stress and Th17-related inflammation in mice. Exp. Neurol. 250, 239–249 (2013).

    Article  CAS  PubMed  Google Scholar 

  218. Egner, P. A. et al. Rapid and sustainable detoxication of airborne pollutants by broccoli sprout beverage: results of a randomized clinical trial in China. Cancer Prev. Res. 7, 813–823 (2014).

    Article  CAS  Google Scholar 

  219. Chen, J. G. et al. Dose-dependent detoxication of the airborne pollutant benzene in a randomized trial of broccoli sprout beverage in Qidong, China. Am. J. Clin. Nutr. 110, 675–684 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Howell, S. J. et al. Final results of the STEM trial: SFX-01 in the treatment and evaluation of ER+ Her2– metastatic breast cancer (mBC). Ann. Oncol. 30, v122 (2019).

    Article  Google Scholar 

  221. Dinkova-Kostova, A. T. et al. Extremely potent triterpenoid inducers of the phase 2 response: correlations of protection against oxidant and inflammatory stress. Proc. Natl Acad. Sci. USA 102, 4584–4589 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Liby, K. T. & Sporn, M. B. Synthetic oleanane triterpenoids: multifunctional drugs with a broad range of applications for prevention and treatment of chronic disease. Pharmacol. Rev. 64, 972–1003 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This paper is affectionately dedicated in memory of Dr Mariola Macías (1984–2020) M.D., Ph.D. in Immunology, Emergency Physician at Hospital Punta Europa, Algeciras (Cadiz), Spain and active member of a research team working against SARS-CoV-2. An excellent professional and a better person. Her humanity, kindness, special and unmistakable smile, generosity, dedication and professionalism will never be forgotten. The authors are grateful to P. Kirkpatrick for his editorial contribution, which resulted in a greatly improved manuscript. A.G.A. acknowledges support from the Austrian Science Fund (FWF) project P25971-B23 (‘Improved cholesterol efflux by natural products’). R.B. acknowledges support by a grant from the Austrian Science Fund (FWF) P27505. V.B. acknowledges support by a grant from the Austrian Science Fund (FWF) P27682-B30. N.B. is recipient of an Australian Research Council DECRA Fellowship. A.C. and E.I. thank the Ministerio de Ciencia, Innovación y Universidades, Spain (Project AGL2017-89417-R) for support. M. Diederich is supported by the National Research Foundation (NRF) (grant number 019R1A2C1009231), by a grant from the MEST of Korea for Tumour Microenvironment Global Core Research Center (GCRC) (grant number NRF-2011-0030001), by the Creative-Pioneering Researchers Program through Seoul National University (Funding number: 370C-20160062), by the Brain Korea 21 (BK21) PLUS programme, by the ‘Recherche Cancer et Sang’ foundation, by the ‘Recherches Scientifiques Luxembourg’ association, by the ‘Een Häerz fir kriibskrank Kanner’ association, by the Action LIONS ‘Vaincre le Cancer’ association and by Télévie Luxembourg. The research work of A.T.D.-K. is funded by Cancer Research UK (C20953/A18644), the Biotechnology and Biological Sciences Research Council (BB/L01923X/1), Reata Pharmaceuticals, and Tenovus Scotland (T17/T14). B.L.F. acknowledges BMBF (TUNGER 036/FUCOFOOD) and AIF (AGEsense) for supporting his research. M.I.G. acknowledges financial support from the European Union’s Horizon 2020 research and innovation programme, project PlantaSYST (SGA No 739582 under FPA No. 664620) and the BG05M2OP001-1.003-001-C01 project, financed by the European Regional Development Fund through the ‘Science and Education for Smart Growth’ Operational Programme. K.M.G. is supported by the UK Medical Research Council (MC_UU_12011/4), the National Institute for Health Research (NIHR Senior Investigator (NF-SI-0515-10042) and the NIHR Southampton Biomedical Research Centre), the European Union (Erasmus+ Capacity-Building ENeA SEA Project and Seventh Framework Programme (FP7/2007-2013), projects EarlyNutrition and ODIN (grant agreements 289346 and 613977), the US National Institute On Ageing of the National Institutes of Health (award no. U24AG047867) and the UK ESRC and BBSRC (award no. ES/M00919X/1). Research in the laboratory of C.W.G. is supported by the Austrian Science Fund (FWF) through project P32109 and a NATVANTAGE grant 2019 by the Wilhelm Doerenkamp-Stiftung. A.K. acknowledges support by national funds through FCT-Foundation for Science and Technology of Portugal within the scope of UIDB/04423/2020 and UIDP/04423/2020. A.L. acknowledges HKBU SDF16-0603-P02 for supporting this research. F.A.M. acknowledges the support by Ministerio de Economia y Competitividad, Spain (project AGL2017-88083-R). A.M. acknowledges the support by a grant of the Romanian Ministry of Research and Innovation, CNCS – UEFISCDI, project number PN-III-P1-1.1-PD-2016-1900 – ‘PhytoSal’, within PNCDI III. G.P. acknowledges the support by NIH G12-MD007591, Kleberg Foundation and NIH R01-AG066749. M.R. acknowledges support by the Swiss National Science Foundation (Schweizerischer Nationalfonds, SNF), and by the Horizon 2020 programme of the European Union. J.M.R. acknowledges the support from the Austrian Science Fund (FWF: P24587), the Natvantage grant 2018 and the University of Vienna, Austria. G.L.R. acknowledges the group of Cellular and Molecular Nutrition (BJ-Lab) at the Institute of Food Sciences, National Research Council, Avellino, Italy. A.S.S. acknowledges the support by UIDB/00211/2020 with funding from FCT/MCTES through national funds. D.S. acknowledges the support by FWF S10711. D.S. is an Ingeborg Hochmair Professor at the University of Innsbruck. K.S.W. is supported by the National Centre for Research and Development (4/POLTUR-1/2016) and the National Science Centre (2017/27/B/NZ4/00917) and Medical University of Lublin, Poland. E.S.S. thanks Universidad Central de Chile, through Dirección de Investigación y Postgrado, for supporting this research. H. Stuppner acknowledges support by the Austrian Research Promotion Agency (FFG), the Austrian Science Fund (FWF) and the Horizon 2020 programme of the European Union (RISE, 691158). A.S. was granted by Instituto de Salud Carlos III, CIBEROBN (CB12/03/30038) and EU-COST Action (CA16112). M.W. acknowledges the support by DFG, BMBF, EU, CSC, DAAD, AvH and Land Baden Württemberg. J.L.W. is grateful to the Swiss National Science Foundation (SNF) for supporting its natural product metabolomics projects (grants nos. 310030E-164289, 31003A_163424 and 316030_164095). S.B.Z. acknowledges the support by University of Vienna, Vienna, Austria. M.H. acknowledges an EPSRC CASE Award (with Pukka Herbs Ltd, UK as industrial partner). I.B.-N. acknowledges the support of Competitivity Operational Program, 2014–2020, entitled ‘Clinical and economical impact of personalized targeted anti-microRNA therapies in reconverting lung cancer chemoresistance’ — CANTEMIR, No. 35/01.09.2016, MySMIS 103375; project PNCDI III 2015-2020 entitled ‘Increasing the performance of scientific research and technology transfer in translational medicine through the formation of a new generation of young researchers’ — ECHITAS, no. 29PFE/18.10.2018. This work was also funded by the Italian Ministry for University and Research (MIUR), grant PRIN: rot. 2017XYBP2R (to C.T.S).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to Atanas G. Atanasov or Claudiu T. Supuran.

Ethics declarations

Competing interests

A.G.A. is executive administrator of the International Natural Product Sciences Taskforce (INPST) and Digital Health and Patient Safety Platform (DHPSP). M. Banach has served on the speakers’ bureau of Abbott/Mylan, Abbott Vascular, Actavis, Akcea, Amgen, Biofarm, KRKA, MSD, Novo-Nordisk, Novartis, Sanofi-Aventis, Servier and Valeant, has served as a consultant to Abbott Vascular, Akcea, Amgen, Daichii Sankyo, Esperion, Freia Pharmaceuticals, Lilly, MSD, Novartis, Polfarmex, Resverlogix, Sanofi-Aventis, and has received grants from Amgen, Mylan, Sanofi and Valeant. R.B. collaborates with Bayer Consumer Health and Dr Willmar Schwabe GmbH & Co. KG, and is scientific advisory committee member of PuraPharm International (HK) Limited and ISURA. G.K.B. is a board member of Bionorica SE. M. Daglia has received consultancy honoraria from Pfizer Italia and Mylan for training courses for chemists, and is a member of the INPST board of directors. A.T.D.-K. is a member of the Scientific and Medical Advisory Board of Evgen Pharma plc. I.E.O. is Dean of Faculty of Pharmacy, Gazi University, Ankara, Turkey, member of the Traditional Chinese Medicine Experts Group in European Pharmacopeia, and principal member of Turkish Academy of Sciences (TUBA). B.L.F. is a member of the INPST Board of Directors and has received research funding from Dr Willmar Schwabe GmbH & Co. KG. K.M.G. has received reimbursement for speaking at conferences sponsored by companies selling nutritional products and is part of an academic consortium that has received research funding from Abbott Nutrition, Nestec and Danone. C.W.G. is chairman of the scientific advisory board of Cyxone AB, SE. M.H.’s research group has received charitable donations from Dr Willmar Schwabe GmbH & Co. KG and recently completed a research project sponsored by Pukka Herbs, UK. A.L. is a member of the board of directors of Kaisa Health. M.J.S.M. is president of Kaiviti Consulting and consults for Gnosis by LeSaffre. F.N. is cofounder and shareholder of OncoNox and Aura Biopharm. G.P. is on the board of Neurotez and Neurotrope. M.R. serves as an adviser for the Nestlé Institute of Health Sciences. G.L.R. is a member of the board of directors of INPST. N.T.T. is Founder and CEO of NTZ Lab Ltd and advisory board member of INPST. M.W. collaborates with Finzelberg GmbH and Schwabe GmbH. J.L.W. collaborates with Nestlé and Firmenich. M.A.P. is CEO and owner of Bionorica SE. J.H. is an employee of and holds shares in UCB Pharma Ltd. M.M. is Founder and Chairman of Sami–Sabinsa Group of Companies. D.S.B. is an employee of Janssen R&D. M. Bodkin is an employee of Evotec (UK) Ltd.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Dictionary of Natural Products: http://dnp.chemnetbase.com/faces/chemical/ChemicalSearch.xhtml

FDA botanical drug development guidance for industry: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/botanical-drug-development-guidance-industry

INPST: https://inpst.net/

Glossary

sp3 carbon atoms

Tetravalent carbon atoms forming single covalent bonds with other atoms within the molecular structure. A higher fraction of sp3 carbons within molecules is a descriptor that indicates more complex 3D structures.

Lipinski’s rule of five

This guideline for the likelihood of a compound having oral bioavailability is based on several characteristics containing the number 5. It predicts that a molecule is likely to have poor absorption or permeation if it has more than one of the following characteristics: there are >5 H-bond donors and >10 H-bond acceptors; the molecular weight is >500; or the partition coefficient LogP is >5. Notably, natural products were identified as common exceptions at the time of publication in 1997.

Dereplication

Pharmacological screening of natural product extracts yields hits potentially containing multiple natural products that need to be considered for further study to identify the bioactive compounds. Dereplication is the process of recognizing and excluding from further study such hit mixtures that contain already known bioactive compounds.

Phenotypic assays

Assays that rely on the ability of tested compounds to exert desired phenotypic changes in cells, isolated tissues, organs or animals. They offer a complementary strategy to target-based assays for identifying new potential drugs.

Phylogenomic approach

The use of genomic data to reveal evolutionary relationships. In the context of natural product drug discovery, the use of phylogenomics is based on the assumption that organisms that have closer evolutionary relationships are more likely to produce similar natural products.

Taxonomic distance

The distance of compared taxa on a constructed phylogenetic tree (also known as an evolutionary tree). Closer distance of compared taxa indicates a closer evolutionary relationship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atanasov, A.G., Zotchev, S.B., Dirsch, V.M. et al. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov 20, 200–216 (2021). https://doi.org/10.1038/s41573-020-00114-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-020-00114-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载