Abstract
Solids with strong electron correlations generally develop exotic phases of electron matter at low temperatures1,2,3. Among such systems, the heavy-fermion semimetal URu2Si2 exhibits an enigmatic transition at To=17.5 K to a ‘hidden-order’ state for which the order parameter remains unknown after 23 years of intense research4,5. Various experiments point to the reconstruction and partial gapping of the Fermi surface when the hidden order establishes6,7,8,9,10,11,12,13,14. However, up to now, the question of how this transition affects the electronic states at the Fermi surface has not been directly addressed by a spectroscopic probe. Here we show, using angle-resolved photoemission spectroscopy, that a band of heavy quasiparticles drops below the Fermi level on the transition to the hidden-order state. Our data provide the first direct evidence of a large reorganization of the electronic structure across the Fermi surface of URu2Si2 occurring during this transition, and unveil a new kind of Fermi-surface instability in correlated electron systems.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
van Harlingen, D. J. Phase-sensitive tests of the symmetry of the pairing state in the high-temperature superconductors. Rev. Mod. Phys. 67, 515–535 (1995).
Mackenzie, A. P. & Maeno, Y. The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing. Rev. Mod. Phys. 75, 657–712 (2003).
Hotta, T. Orbital ordering phenomena in d- and f-electron systems. Rep. Prog. Phys. 69, 2061–2155 (2006).
Palstra, T. T. M. et al. Superconducting and magnetic transitions in the heavy-fermion system URu2Si2 . Phys. Rev. Lett. 55, 2727–2730 (1985).
Tripathi, V., Chandra, P. & Coleman, P. Sleuthing hidden-order. Nature Phys. 3, 78–80 (2007).
Maple, M. B. et al. Partially gapped Fermi surface in the heavy-electron superconductor URu2Si2 . Phys. Rev. Lett. 56, 185–188 (1986).
Ohkuni, H. et al. Fermi surface properties and de Haas-van Alphen oscillation in both the normal and superconducting mixed states of URu2Si2 . Phil. Mag. B 79, 1045–1077 (1999).
Palstra, T. T. M. et al. Anisotropic electrical resistivity of the magnetic heavy-fermion superconductor URu2Si2 . Phys. Rev. B 33, 6527–6530 (1986).
Behnia, K. et al. Thermal transport in the hidden-order state of URu2Si2 . Phys. Rev. Lett. 94, 156405 (2005).
Wiebe, C. R. et al. Gapped itinerant spin excitations account for missing entropy in the hidden order state of URu2Si2 . Nature Phys. 3, 96–99 (2007).
Schoenes, J., Schönenberger, C., Franse, J. J. M. & Menovsky, A. A. Hall-effect and resistivity study of the heavy-fermion system URu2Si2 . Phys. Rev. B 35, 5375–5378 (1987).
Escudero, R., Morales, F. & Lejay, P. Temperature dependence of the antiferromagnetic state in URu2Si2 by point-contact spectroscopy. Phys. Rev. B 49, 15271–15275 (1994).
Bonn, D. A., Garret, J. D. & Timusk, T. Far-infrared properties of URu2Si2 . Phys. Rev. Lett. 61, 1305–1308 (1988).
Villaume, A. et al. A signature of hidden order in URu2Si2: The excitation at the wave vector Q0=(100). Phys. Rev. B 78, 012504 (2008).
Ito, T. et al. Band structure and Fermi surface of URu2Si2 studied by high-resolution angle-resolved photoemission spectroscopy. Phys. Rev. B 60, 13390–13395 (1999).
Denlinger, J. D. et al. Advances in photoemission spectroscopy of f-electron materials. Physica B 281–282, 716–722 (2000).
Denlinger, J. D. et al. Comparative study of the electronic structure of XRu2Si2: Probing the Anderson lattice. J. Electron Spectrosc. 117–118, 347–369 (2001).
Ehm, D. et al. High-resolution photoemission study on low-TK Ce systems: Kondo resonance, crystal field structures, and their temperature dependence. Phys. Rev. B 76, 045117 (2007).
Kasahara, Y. et al. Exotic superconducting properties in the electron–hole-compensated heavy-fermion semimetal URu2Si2 . Phys. Rev. Lett. 99, 116402 (2007).
Behnia, K., Méasson, M.-A. & Kopelevich, Y. Nernst effect in semimetals: The effective mass and the figure of merit. Phys. Rev. Lett. 98, 076603 (2007).
Elgazzar, S., Rusz, J., Amft, M., Oppeneer, P. M. & Mydosh, J. A. Hidden-order in URu2Si2 originates from Fermi surface gapping induced by dynamic symmetry breaking. Nature Mater. 8, 337–341 (2009).
Chandra, P., Coleman, P., Mydosh, J. A. & Tripathi, V. Hidden orbital order in the heavy fermion metal URu2Si2 . Nature 417, 831–834 (2002).
Tripathi, V., Chandra, P. & Coleman, P. Itineracy and hidden-order in URu2Si2 . J. Phys. Condens. Matter 17, 5285–5311 (2005).
Janik, J. A. et al. Itinerant spin excitations near the hidden order transition in URu2Si2. Preprint at <http://arxiv.org/abs/0806.3137> (2008).
Balatsky, A. V. et al. Incommensurate spin resonance in URu2Si2. Preprint at <http://arxiv.org/abs/0903.2570> (2009).
Martin, L. C. & Assaad, F. F. Evolution of the Fermi surface across a magnetic order–disorder transition in the two-dimensional Kondo-lattice model: A dynamical cluster approach. Phys. Rev. Lett. 101, 066404 (2008).
Amitsuka, H. et al. Pressure–temperature phase diagram of the heavy-electron superconductor URu2Si2 . J. Magn. Magn. Mater. 310, 214–220 (2007).
Sekiyama, A. et al. Probing bulk states of correlated electron systems by high-resolution resonance photoemission. Nature 403, 396–398 (2000).
Lejay, P., Muller, J. & Argoud, R. Crystal growth and stoichiometry study of the ternary silicides CeRu2Si2 and Ce1−xLaxRu2Si2 . J. Cryst. Growth 130, 238–244 (1993).
Reinert, F. et al. Observation of a BCS spectral function in a conventional superconductor by photoelectron spectroscopies. Phys. Rev. Lett. 85, 3930–3933 (2000).
Acknowledgements
We thank F. Assaad, L. Bascones, K. Behnia, F. Bourdarot, P. Chandra, J. Flouquet and E. Hassinger for discussions. A.F.S.-S thanks LPEM for financial support. The work at the University of Würzburg was supported by the Deutsche Forschungsgemeinschaft through grant No. Re 1469/4-3/4 (M.K., F.L.B., A.N., F.R.)
Author information
Authors and Affiliations
Contributions
Project conception: A.F.S.-S. and F.R.; planning of measurements: A.F.S.-S., M.K. and F.L.B; experiments: A.F.S.-S., M.K., F.L.B and A.N; data analysis: A.F.S.-S., M.K. and F.L.B; writing of the paper: A.F.S.-S., with input from M.K. and F.L.B.; writing of Supplementary Information: A.N.; sample fabrication: P.L.; infrastructure for ARPES experiments and advice: F.R. All authors discussed extensively the results and the manuscript.
Corresponding author
Supplementary information
Supplementary Information
Supplementary Information (PDF 266 kb)
Rights and permissions
About this article
Cite this article
Santander-Syro, A., Klein, M., Boariu, F. et al. Fermi-surface instability at the ‘hidden-order’ transition of URu2Si2. Nature Phys 5, 637–641 (2009). https://doi.org/10.1038/nphys1361
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys1361
This article is cited by
-
Quantum-well states at the surface of a heavy-fermion superconductor
Nature (2023)
-
Proximity to a critical point driven by electronic entropy in URu2Si2
npj Quantum Materials (2021)
-
Destabilization of hidden order in URu2Si2 under magnetic field and pressure
Nature Physics (2020)
-
Unveiling hidden multipolar orders with magnetostriction
Nature Communications (2019)
-
Field-induced spin-density wave beyond hidden order in URu2Si2
Nature Communications (2016)