+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fermi-surface instability at the ‘hidden-order’ transition of URu2Si2

Abstract

Solids with strong electron correlations generally develop exotic phases of electron matter at low temperatures1,2,3. Among such systems, the heavy-fermion semimetal URu2Si2 exhibits an enigmatic transition at To=17.5 K to a ‘hidden-order’ state for which the order parameter remains unknown after 23 years of intense research4,5. Various experiments point to the reconstruction and partial gapping of the Fermi surface when the hidden order establishes6,7,8,9,10,11,12,13,14. However, up to now, the question of how this transition affects the electronic states at the Fermi surface has not been directly addressed by a spectroscopic probe. Here we show, using angle-resolved photoemission spectroscopy, that a band of heavy quasiparticles drops below the Fermi level on the transition to the hidden-order state. Our data provide the first direct evidence of a large reorganization of the electronic structure across the Fermi surface of URu2Si2 occurring during this transition, and unveil a new kind of Fermi-surface instability in correlated electron systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temperature dependence of the heavy-quasiparticle band in URu2Si2.
Figure 2: Heavy-quasiparticle band in the hidden-order state and hybridization with a conduction band along the (110) direction.
Figure 3: Heavy-quasiparticle band in the hidden-order state and hybridization with a conduction band along the (100) direction.

Similar content being viewed by others

References

  1. van Harlingen, D. J. Phase-sensitive tests of the symmetry of the pairing state in the high-temperature superconductors. Rev. Mod. Phys. 67, 515–535 (1995).

    ADS  Google Scholar 

  2. Mackenzie, A. P. & Maeno, Y. The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing. Rev. Mod. Phys. 75, 657–712 (2003).

    ADS  Google Scholar 

  3. Hotta, T. Orbital ordering phenomena in d- and f-electron systems. Rep. Prog. Phys. 69, 2061–2155 (2006).

    Article  ADS  Google Scholar 

  4. Palstra, T. T. M. et al. Superconducting and magnetic transitions in the heavy-fermion system URu2Si2 . Phys. Rev. Lett. 55, 2727–2730 (1985).

    Article  ADS  Google Scholar 

  5. Tripathi, V., Chandra, P. & Coleman, P. Sleuthing hidden-order. Nature Phys. 3, 78–80 (2007).

    Article  ADS  Google Scholar 

  6. Maple, M. B. et al. Partially gapped Fermi surface in the heavy-electron superconductor URu2Si2 . Phys. Rev. Lett. 56, 185–188 (1986).

    Article  ADS  Google Scholar 

  7. Ohkuni, H. et al. Fermi surface properties and de Haas-van Alphen oscillation in both the normal and superconducting mixed states of URu2Si2 . Phil. Mag. B 79, 1045–1077 (1999).

    ADS  Google Scholar 

  8. Palstra, T. T. M. et al. Anisotropic electrical resistivity of the magnetic heavy-fermion superconductor URu2Si2 . Phys. Rev. B 33, 6527–6530 (1986).

    Article  ADS  Google Scholar 

  9. Behnia, K. et al. Thermal transport in the hidden-order state of URu2Si2 . Phys. Rev. Lett. 94, 156405 (2005).

    Article  ADS  Google Scholar 

  10. Wiebe, C. R. et al. Gapped itinerant spin excitations account for missing entropy in the hidden order state of URu2Si2 . Nature Phys. 3, 96–99 (2007).

    Article  ADS  Google Scholar 

  11. Schoenes, J., Schönenberger, C., Franse, J. J. M. & Menovsky, A. A. Hall-effect and resistivity study of the heavy-fermion system URu2Si2 . Phys. Rev. B 35, 5375–5378 (1987).

    Article  ADS  Google Scholar 

  12. Escudero, R., Morales, F. & Lejay, P. Temperature dependence of the antiferromagnetic state in URu2Si2 by point-contact spectroscopy. Phys. Rev. B 49, 15271–15275 (1994).

    Article  ADS  Google Scholar 

  13. Bonn, D. A., Garret, J. D. & Timusk, T. Far-infrared properties of URu2Si2 . Phys. Rev. Lett. 61, 1305–1308 (1988).

    Article  ADS  Google Scholar 

  14. Villaume, A. et al. A signature of hidden order in URu2Si2: The excitation at the wave vector Q0=(100). Phys. Rev. B 78, 012504 (2008).

    Article  ADS  Google Scholar 

  15. Ito, T. et al. Band structure and Fermi surface of URu2Si2 studied by high-resolution angle-resolved photoemission spectroscopy. Phys. Rev. B 60, 13390–13395 (1999).

    Article  ADS  Google Scholar 

  16. Denlinger, J. D. et al. Advances in photoemission spectroscopy of f-electron materials. Physica B 281–282, 716–722 (2000).

    Article  ADS  Google Scholar 

  17. Denlinger, J. D. et al. Comparative study of the electronic structure of XRu2Si2: Probing the Anderson lattice. J. Electron Spectrosc. 117–118, 347–369 (2001).

    Article  Google Scholar 

  18. Ehm, D. et al. High-resolution photoemission study on low-TK Ce systems: Kondo resonance, crystal field structures, and their temperature dependence. Phys. Rev. B 76, 045117 (2007).

    Article  ADS  Google Scholar 

  19. Kasahara, Y. et al. Exotic superconducting properties in the electron–hole-compensated heavy-fermion semimetal URu2Si2 . Phys. Rev. Lett. 99, 116402 (2007).

    Article  ADS  Google Scholar 

  20. Behnia, K., Méasson, M.-A. & Kopelevich, Y. Nernst effect in semimetals: The effective mass and the figure of merit. Phys. Rev. Lett. 98, 076603 (2007).

    Article  ADS  Google Scholar 

  21. Elgazzar, S., Rusz, J., Amft, M., Oppeneer, P. M. & Mydosh, J. A. Hidden-order in URu2Si2 originates from Fermi surface gapping induced by dynamic symmetry breaking. Nature Mater. 8, 337–341 (2009).

    Article  ADS  Google Scholar 

  22. Chandra, P., Coleman, P., Mydosh, J. A. & Tripathi, V. Hidden orbital order in the heavy fermion metal URu2Si2 . Nature 417, 831–834 (2002).

    Article  ADS  Google Scholar 

  23. Tripathi, V., Chandra, P. & Coleman, P. Itineracy and hidden-order in URu2Si2 . J. Phys. Condens. Matter 17, 5285–5311 (2005).

    Article  ADS  Google Scholar 

  24. Janik, J. A. et al. Itinerant spin excitations near the hidden order transition in URu2Si2. Preprint at <http://arxiv.org/abs/0806.3137> (2008).

  25. Balatsky, A. V. et al. Incommensurate spin resonance in URu2Si2. Preprint at <http://arxiv.org/abs/0903.2570> (2009).

  26. Martin, L. C. & Assaad, F. F. Evolution of the Fermi surface across a magnetic order–disorder transition in the two-dimensional Kondo-lattice model: A dynamical cluster approach. Phys. Rev. Lett. 101, 066404 (2008).

    Article  ADS  Google Scholar 

  27. Amitsuka, H. et al. Pressure–temperature phase diagram of the heavy-electron superconductor URu2Si2 . J. Magn. Magn. Mater. 310, 214–220 (2007).

    Article  ADS  Google Scholar 

  28. Sekiyama, A. et al. Probing bulk states of correlated electron systems by high-resolution resonance photoemission. Nature 403, 396–398 (2000).

    Article  ADS  Google Scholar 

  29. Lejay, P., Muller, J. & Argoud, R. Crystal growth and stoichiometry study of the ternary silicides CeRu2Si2 and Ce1−xLaxRu2Si2 . J. Cryst. Growth 130, 238–244 (1993).

    Article  ADS  Google Scholar 

  30. Reinert, F. et al. Observation of a BCS spectral function in a conventional superconductor by photoelectron spectroscopies. Phys. Rev. Lett. 85, 3930–3933 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank F. Assaad, L. Bascones, K. Behnia, F. Bourdarot, P. Chandra, J. Flouquet and E. Hassinger for discussions. A.F.S.-S thanks LPEM for financial support. The work at the University of Würzburg was supported by the Deutsche Forschungsgemeinschaft through grant No. Re 1469/4-3/4 (M.K., F.L.B., A.N., F.R.)

Author information

Authors and Affiliations

Authors

Contributions

Project conception: A.F.S.-S. and F.R.; planning of measurements: A.F.S.-S., M.K. and F.L.B; experiments: A.F.S.-S., M.K., F.L.B and A.N; data analysis: A.F.S.-S., M.K. and F.L.B; writing of the paper: A.F.S.-S., with input from M.K. and F.L.B.; writing of Supplementary Information: A.N.; sample fabrication: P.L.; infrastructure for ARPES experiments and advice: F.R. All authors discussed extensively the results and the manuscript.

Corresponding author

Correspondence to Andrés F. Santander-Syro.

Supplementary information

Supplementary Information

Supplementary Information (PDF 266 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santander-Syro, A., Klein, M., Boariu, F. et al. Fermi-surface instability at the ‘hidden-order’ transition of URu2Si2. Nature Phys 5, 637–641 (2009). https://doi.org/10.1038/nphys1361

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1361

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载