Abstract
To extend understanding of the genetic architecture and molecular basis of type 2 diabetes (T2D), we conducted a meta-analysis of genetic variants on the Metabochip, including 34,840 cases and 114,981 controls, overwhelmingly of European descent. We identified ten previously unreported T2D susceptibility loci, including two showing sex-differentiated association. Genome-wide analyses of these data are consistent with a long tail of additional common variant loci explaining much of the variation in susceptibility to T2D. Exploration of the enlarged set of susceptibility loci implicates several processes, including CREBBP-related transcription, adipocytokine signaling and cell cycle regulation, in diabetes pathogenesis.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Stumvoll, M. et al. Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365, 1333–1346 (2005).
Zeggini, E. et al. Meta-analysis of genome-wide association data and large-scale replication identified additional susceptibility loci for type 2 diabetes. Nat. Genet. 40, 638–645 (2008).
Kong, A. et al. Parental origin of sequence variants associated with complex diseases. Nature 462, 868–874 (2009).
Voight, B.F. et al. Twelve type 2 diabetes susceptibility loci identified through large scale association analysis. Nat. Genet. 42, 579–589 (2010).
Dupuis, J. et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat. Genet. 42, 105–116 (2010).
Qi, L. et al. Genetic variants at 2q24 are associated with susceptibility to type 2 diabetes. Hum. Mol. Genet. 19, 2706–2715 (2010).
Tsai, F.-J. A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese. PLoS Genet. 6, e1000847 (2010).
Shu, X.O. et al. Identification of new genetic risk variants for type 2 diabetes. PLoS Genet. 6, e1001127 (2010).
Yamauchi, T. et al. A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B. Nat. Genet. 42, 864–868 (2010).
Kooner, J.S. et al. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat. Genet. 43, 984–989 (2011).
Cho, Y.S. et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat. Genet. 44, 67–72 (2012).
Voight, B.F. et al. The Metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genet. 8, e1002793 (2012).
1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).
Loos, R.J.F. et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat. Genet. 40, 768–775 (2008).
Speliotes, E.K. et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat. Genet. 42, 937–948 (2010).
Teslovich, T.M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).
Chambers, J.C. et al. Common genetic variation near MC4R is associated with waist circumference and insulin resistance. Nat. Genet. 40, 716–718 (2008).
Heid, I.M. et al. Meta-analysis identifies 12 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat. Genet. 42, 949–960 (2010).
Soranzo, N. et al. Common variants at 10 genomic loci influence hemoglobin A1C levels via glycaemic and nonglycaemic pathways. Diabetes 59, 3229–3239 (2010).
Wray, N.R. et al. The genetic interpretation of area under the ROC curve in genomic profiling. PLoS Genet. 6, e1000864 (2010).
Yang, J. et al. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 7, 76–82 (2011).
Lee, S.H. et al. Estimating missing heritability for disease from genome-wide association studies. Am. J. Hum. Genet. 88, 294–305 (2011).
Stahl, E.A. et al. Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nat. Genet. 44, 483–489 (2012).
Unoki, H. et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat. Genet. 40, 1098–1102 (2008).
Zeggini, E. et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316, 1336–1341 (2007).
Shea, J. et al. Comparing strategies to fine-map the association of common SNPs at chromosome 9p21 with type 2 diabetes and myocardial infarction. Nat. Genet. 43, 801–805 (2011).
Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).
Dickson, S.P. et al. Rare variants create synthetic genome-wide associations. PLoS Biol. 8, e1000294 (2010).
International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).
International HapMap Consortium. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58 (2010).
Waters, K.M. et al. Consistent association of type 2 diabetes risk variants found in Europeans in diverse racial and ethnic groups. PLoS Genet. 6, e1001078 (2010).
Magi, R. et al. Meta-analysis of sex-specific genome-wide association studies. Genet. Epidemiol. 34, 846–853 (2010).
Saxena, R. et al. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat. Genet. 42, 142–148 (2010).
Scott, R.A. et al. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat. Genet. published online (12 August 2012); doi:10.1038/ng.2385.
Barrett, J.C. et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat. Genet. 41, 703–707 (2009).
Emilsson, V. et al. Genetics of gene expression and its effect on disease. Nature 452, 423–428 (2008).
Ng, P.C. & Henikoff, S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 31, 3812–3814 (2003).
Doria, A. et al. The emerging genetic architecture of type 2 diabetes. Cell Metab. 8, 186–200 (2008).
Lage, K. et al. A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat. Biotechnol. 25, 309–316 (2007).
Lage, K. et al. A large-scale analysis of tissue-specific pathology and gene expression of human disease genes and complexes. Proc. Natl. Acad. Sci. USA 105, 20870–20875 (2008).
Rossin, E.J. et al. Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology. PLoS Genet. 7, e1001273 (2011).
Raychaudhuri, S. et al. Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions. PLoS Genet. 5, e1000534 (2009).
Muoio, D.M. & Newgard, C.B. Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and β-cell failure in type 2 diabetes. Nat. Rev. Mol. Cell Biol. 9, 193–205 (2008).
Gangwisch, J.E. Epidemiological evidence for the links between sleep, circadian rhythms and metabolism. Obes. Rev. 10, 37–45 (2009).
Boucher, B.J. Vitamin D insufficiency and diabetes risks. Curr. Drug Targets 12, 61–87 (2011).
Segrè, A.V. et al. Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. PLoS Genet. 6, e1001058 (2010).
Pittas, A.G. et al. Adipocytokines and insulin resistance. J. Clin. Endocrinol. Metab. 89, 447–452 (2004).
Rane, S.G. et al. Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in β-islet cell hyperplasia. Nat. Genet. 22, 44–52 (1999).
Fiaschi-Taesch, N.M. et al. Induction of β-cell proliferation and engraftment using a single G1/S regulatory molecule, cdk6. Diabetes 59, 1926–1936 (2010).
Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).
Ioannidis, J.P. et al. Heterogeneity in meta-analyses of genome-wide association investigations. PLoS ONE 2, e841 (2007).
Lin, S. et al. Exhaustive allelic transmission disequilibrium tests as a new approach to genome-wide association studies. Nat. Genet. 36, 1181–1188 (2004).
Storey, J.D. & Tibshirani, R. Statistical methods for identifying differentially expressed genes in DNA microarrays. Methods Mol. Biol. 224, 149–157 (2003).
Stolerman, E.S. et al. TCF7L2 variants are associated with increased proinsulin/insulin ratios but not obesity traits in the Framingham Heart Study. Diabetologia 52, 614–620 (2009).
Stefansson, H. et al. A common inversion under selection in Europeans. Nat. Genet. 37, 129–137 (2005).
Acknowledgements
Funding for this study was provided by the Academy of Finland (77299, 102318, 110413, 118065, 123885, 124243, 129680, 129293, 129494, 136895, 139635, 141005, 213506 and 251217); Agence Nationale de la Recherche (France); the American Diabetes Association (7-08-MN-OK); Association Française des Diabétiques; Association de Langue Française pour l'Etude du Diabète et des Maladies Métaboliques (France); Association Diabète Risque Vasculaire (France); British Diabetic Association (BDA) Research (UK); the British Heart Foundation (RG/98002 and RG2008/08); Cancer Research UK; the Central Norway Health Authority; the Central Finland Hospital District; the Center for Inherited Disease Research (CIDR) (USA); the Chief Scientist Office, Scotland (CZB/4/672); the City of Kuopio (Finland); the City of Leutkirch (Germany); the Department of Health (UK); Deutsche Forschungsgemeinschaft (ER1 55/6-2); Diabetes UK; the Doris Duke Charitable Foundation (USA); the Estonian government (SF0180142s0); the European Commission: ENGAGE (HEALTH-F4-2007- 201413), EXGENESIS (LSHM-CT-2004-005272), 245536, QLG1-CT-2002-00896 and 2004310; the European Commission (Marie Curie: FP7-PEOPLE-2010-IEF); the European Regional Development Fund; the Faculty of Medicine at the Norwegian University of Science and Technology; the Finnish Diabetes Association; the Finnish Diabetes Research Foundation; the Finnish Foundation for Cardiovascular Research; the Finnish Heart Association; the Finnish Medical Society; the Folkhälsan Research Foundation (Finland); the Food Standards Agency (UK); the Foundation for Life and Health in Finland; the Federal Ministry of Education and Research (BMBF) (Germany); the Federal Ministry of Health (Germany); the General Secretary of Research and Technology (Greece); the German Center for Diabetes Research (DZD); the German Research Council (GRK 1041); the Great Wine Estates of the Margaret River region of Western Australia; Groupe d'Etude des Maladies Métaboliques et Systémiques (France); Harvard Medical School (USA); the Heinz Nixdorf Foundation (Germany); Helmholtz Zentrum München–Research Center for Environment and Health (Germany); the Helsinki University Central Hospital Research Foundation (Finland); IngaBritt and Arne Lundberg's Research Foundation (Sweden) (grant 359); the Ministry of Health (Ricerca Corrente) (Italy); Karolinska Institutet (Sweden); the Knut and Alice Wallenberg Foundation (Sweden) (KAW 2009.0243); Kuopio University Hospital (Finland); the Municipal Heath Care Center and Hospital, Jakobstad, Finland; the Ministry of Social Affairs and Health (Finland); the Ministry of Education and Culture (Finland) (627; 2004–2011); the Ministry of Innovation, Science, Research and Technology of North Rhine-Westphalia (Germany); the Medical Research Council (UK) (G0000649 and G0601261); an MRC-GSK pilot programme grant (UK); the Munich Center of Health Sciences (MC Health) (Germany); the National Genome Research Network (NGFN) (Germany); the National Heart, Lung, and Blood Institute (NHLBI) (HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, HHSN268201100012C, R01HL087641, R01HL59367, R01HL086694, N01HC25195 and N02HL64278); the National Human Genome Research Institute (NHGRI) (U01HG004402 and N01HG65403); the US National Institutes of Health (USA) (HHSN268200625226C, UL1RR025005, U01HG004399, 1R21NS064908, 1Z01HG000024, AG028555, AG08724, AG04563, AG10175, AG08861 and CA055075); the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (DK062370, DK058845, DK072193, DK078616, DK080140 and DK073490); the Närpes Health Care Foundation (Finland); the National Health Screening Service of Norway; the National Institute of Health Research (UK); the National Institute for Health and Welfare (Finland); the Nord-Trøndelag County Council (Norway); the Nordic Center of Excellence in Disease Genetics; the Norwegian Institute of Public Health; the Norwegian Research Council; Novo Nordisk Fonden (Denmark); the Ollqvist Foundation (Sweden); the Oxford NIHR Biomedical Research Centre (UK); the Paavo Nurmi Foundation (Finland); the Päivikki and Sakari Sohlberg Foundation (Finland); the Perklén Foundation (Sweden); Pfizer; the Pirkanmaa Hospital District (Finland); Programme National de Recherche sur le Diabète (France); Programme Hospitalier de Recherche Clinique (French Ministry of Health); the Region of Nord-Pas-de-Calais (Contrat de Projets Etat-Région) (France); Research into Ageing (UK); the Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center; the Royal Swedish Academy of Sciences; Sarstedt AG & Co. (Germany); the Signe and Ane Gyllenberg Foundation (Sweden); the Slottery Machine Association (Finland); the Social Insurance Institution of Finland (4/26/2010); the South OstroBothnia Hospital District (Finland); the State of Baden-Württemberg, Germany; the Stockholm County Council (560183 and 562183); Stroke Association (UK); the Swedish Research Council (8691, 09533, 2009-1039, Dnr 521-2010-3490, Dnr 521-2007-4037, Dnr 521-2008-2974, Dnr 825-2010-5983 and Dnr 349-2008-6589); the Swedish Cultural Foundation in Finland; the Swedish Diabetes Foundation; the Swedish Heart-Lung Foundation; the Swedish Foundation for Strategic Research; the Swedish Society of Medicine; the Swedish Research Council; the Swedish Research Council for Infrastructures; The Sigrid Juselius Foundation (Finland); the Torsten and Ragnar Söderberg Foundation (Sweden) (MT33/09); University Hospital Essen (Germany); University of Tromsø (Norway); Uppsala University (Sweden); Uppsala University Hospital (Sweden); and the Wellcome Trust (GR072960, 076113, 077016, 081682, 083948, 083270, 084711, 086596, 090367, 090532 and 098051). A more detailed set of acknowledgments is provided in the Supplementary Note.
Author information
Authors and Affiliations
Consortia
Contributions
Writing group: A.P.M., B.F.V., T.M.T., T. Ferreira, A.V.S., V. Steinthorsdottir, R.J.S., H.K., H.G., A. Mahajan, I.P., M.B. and M.I.M.
Corresponding authors
Ethics declarations
Competing interests
V.S., G.T., U.T. and K.S. are employees at deCODE genetics, a biotechnology company that provides genetic testing services, and own stock and/or stock options in the company. J.F. received consulting honoraria from Novartis, Eli Lilly and Pfizer. I.B. and spouse own stock in GlaxoSmithKline and Incyte.
Additional information
A full list of members is provided in the Supplementary Note.
A full list of members is provided in the Supplementary Note.
A full list of members is provided in the Supplementary Note.
A full list of members is provided in the Supplementary Note.
A full list of members is provided in the Supplementary Note.
Rights and permissions
About this article
Cite this article
the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 44, 981–990 (2012). https://doi.org/10.1038/ng.2383
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ng.2383