+
Skip to main content
Log in

Evaluation of a novel infrared range vibration-based descriptor (EVA) for QSAR studies. 1. General application

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

A novel molecular descriptor (EVA) based upon calculated infrared range vibrational frequencies is evaluated for use in QSAR studies. The descriptor is invariant to both translation and rotation of the structures concerned. The method was applied to 11 QSAR datasets exhibiting both a range of biological endpoints and various degrees of structural diversity. This study demonstrates that robust QSAR models can be obtained using the EVA descriptor and examines the effect of EVA parameter changes on these models; recommendations are made as to the appropriate choice of parameters. The performance of EVA was found to be comparable in statistical terms to that of CoMFA, despite the fact that EVA does not require the generation of a structural alignment. Models derived using semiempirical (MOPAC AM1 and PM3) and AMBER mechanics calculated normal mode frequencies are compared, with the overall conclusion that the semiempirical methods perform equally well and both outperform the AMBER-based models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hansch, C. and Fujita, T., J. Am. Chem. Soc., 86 (1964) 1616.

    Google Scholar 

  2. Ghose, A.K. and Crippen, G.M., Mol. Pharmacol., 37 (1990) 725.

    Google Scholar 

  3. Cramer, R.D., Patterson, D.E. and Bunce, J.D., J. Am. Chem. Soc., 110 (1988) 5959.

    Google Scholar 

  4. Doweyko, A.M., J. Med. Chem., 31 (1988) 1396.

    Google Scholar 

  5. Wiese, M., In Kubinyi, H. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, The Netherlands, 1993, pp. 431-442.

  6. Kim, K.H. and Martin, Y.C., J. Org. Chem., 56 (1991) 2723.

    Google Scholar 

  7. Kim, K.H., Greco, G., Novellino, E., Silipo, C. and Vittoria, A., J. Comput.-Aided Mol. Design, 7 (1993) 263.

    Google Scholar 

  8. Kellogg, G.E., Semus, S.F. and Abraham, D.J., J. Comput.-Aided Mol. Design, 5 (1991) 545.

    Google Scholar 

  9. Karelson, M., Lobanov, V.S. and Katritzky, A.R., Chem. Rev., 96 (1996) 1027.

    Google Scholar 

  10. Rhyu, K.-B., Patel, H.C. and Hopfinger, A.J., J. Chem. Inf. Comput. Sci., 35 (1995) 771.

    Google Scholar 

  11. Hansch, C. and Leo, A., Exploring QSAR. Fundamentals and Applications in Chemistry and Biology. ACS Professional Reference Book, American Chemical Society, Washington, DC, U.S.A., 1995.

    Google Scholar 

  12. Klebe, G., Abraham, U. and Mietzner, T, J. Med. Chem., 37 (1994) 4130.

    Google Scholar 

  13. Cho, S.J. and Tropsha, A., J. Med. Chem., 38 (1995) 1060.

    Google Scholar 

  14. Kroemer, R.T. and Hecht, P., J. Comput.-Aided Mol. Design, 9 (1995) 205.

    Google Scholar 

  15. Kroemer, R.T. and Hecht, P., J. Comput.-Aided Mol. Design, 9 (1995) 396.

    Google Scholar 

  16. Silverman, B.D. and Platt, D.E., J. Med. Chem., 39 (1996) 2129.

    Google Scholar 

  17. Muresan, S., Sulea, T, Ciubotariu, D., Kurunezi, L. and Simon, Z., Quant. Struct.-Act. Relatsh., 15 (1996) 31.

    Google Scholar 

  18. Wagener, M., Sadowski, J. and Gasteiger, J., J. Am. Chem. Soc., 117 (1995) 7769.

    Google Scholar 

  19. Todeschini, R., Vighi, M., Provenzani, R., Finizio, A. and Gramatica, P., J. Chemosphere, 32 (1996) 1527.

    Google Scholar 

  20. Jonathan, P., McCarthy, W.V. and Roberts, A.M.I., J. Chemometrics, 10 (1996) 189.

    Google Scholar 

  21. Ferguson, A.M., Heritage, T., Jonathon, P., Pack, S.E., Phillips, L., Rogan, J. and Snaith, P.J., J. Comput.-Aided Mol. Design, 11 (1997) 143.

    Google Scholar 

  22. Ginn, C.M.R., Turner, D.B., Willett, P., Ferguson, A.M. and Heritage, T.W., J. Chem. Inf. Comput. Sci., 37 (1997) 23.

    Google Scholar 

  23. Herzberg, G., Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polyatomic Molecules, 8th ed., Van Nostrand Company, Inc., New York, NY, U.S.A., 1945.

    Google Scholar 

  24. Wold, S., Johansson, E. and Cocchi, M., In Kubinyi, H. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, The Netherlands, 1993, pp. 523-550.

    Google Scholar 

  25. Wold, S., In Van de Waterbeemd, H. (Ed.) Methods and Principles in Medicinal Chemistry, Vol. 2, Chemometric Methods in Molecular Design, VCH, Weinheim, Germany, 1995, pp. 195-218.

    Google Scholar 

  26. Cramer, R.D., J. Am. Chem. Soc., 102 (1980) 1837.

    Google Scholar 

  27. SYBYL, Tripos Associates Inc., St. Louis, MO, U.S.A.

  28. Carroll, F.I., Gao, Y.G., Rahman, M.A., Abraham, P., Parham, K. Lewin, A.H., Boja, J.W. and Kuhar, M.J., J. Med. Chem., 34 (1991) 2719.

    Google Scholar 

  29. Jain, A.N., Koile, K. and Chapman, D., J. Med. Chem., 37 (1994) 2315.

    Google Scholar 

  30. Hahn, M. and Rogers, D., J. Med. Chem., 38 (1995) 2091.

    Google Scholar 

  31. Good, A.C., So, S.-S. and Richards, W.G., J. Med. Chem., 36 (1993) 433.

    Google Scholar 

  32. ASP, 1993, Oxford Molecular Ltd., The Magdalen Centre, Oxford Science Park, Sandford on Thames, Oxford OX4 4GA, U.K.

  33. Waller, C.L. and McKinney, J.D., J. Med. Chem., 35 (1992) 3660.

    Google Scholar 

  34. Stewart, J.J.P, J. Comput.-Aided Mol. Design, 4 (1990) 1.

    Google Scholar 

  35. Quantum Chemistry Program Exchange (QCPE), University of Indiana, Bloomington, IN, U.S.A.

  36. Weiner, S.J., Kollman, PA., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta Jr., S. and Weiner, P., J. Am. Chem. Soc., 106 (1984) 765.

    Google Scholar 

  37. Turner, D.B., Willett, P.W, Ferguson, A.M. and Heritage, T., J. Med. Chem., submitted.

  38. Cruciani, G., Clementi, S. and Baroni, M., In Kubinyi, H. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, The Netherlands, 1993, pp. 551-564.

    Google Scholar 

  39. Kubinyi, H. and Abraham, U., In Kubinyi, H. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, The Netherlands, 1993, pp. 717-728.

    Google Scholar 

  40. Topliss, J.G. and Edwards, R.P., J. Med. Chem., 22 (1979) 1238.

    Google Scholar 

  41. Turner, D.B., Ph.D. Thesis, Sheffield University, Sheffield, U.K., 1996.

  42. Wold, S. and Eriksson, L., In Van de Waterbeemd, H. (Ed.) Methods and Principles in Medicinal Chemistry, Vol. 2, Chemometric Methods in Molecular Design, VCH, Weinheim, Germany, 1993, pp. 309-318.

    Google Scholar 

  43. McFarland, J.W, J. Med. Chem., 35 (1992) 2543.

    Google Scholar 

  44. Waszkowycz, B., Clark, D.E., Frenkel, D., Li, J., Murray, C.W, Robson, B. and Westhead, D.R., J. Med. Chem., 37 (1994) 3994.

    Google Scholar 

  45. Allen, M.S., Laloggia, A.J., Dorn, L.J., Martin, M.J., Costantino, G., Hagen, T.J., Koehler, K.F., Skolnick, P. and Cook, J.M., J. Med. Chem., 35 (1992) 4001.

    Google Scholar 

  46. Greco, G., Novellino, E., Silipo, C. and Vittoria, A., Quant. Struct.-Act. Relatsh., 10 (1991) 289.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, D.B., Willett, P., Ferguson, A.M. et al. Evaluation of a novel infrared range vibration-based descriptor (EVA) for QSAR studies. 1. General application. J Comput Aided Mol Des 11, 409–422 (1997). https://doi.org/10.1023/A:1007988708826

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1023/A:1007988708826

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载