Abstract
To understand how changing environmental conditions affect forest ecosystems it is crucial to explore how soil nutrient availability influences plant nutrient dynamics. However, it remains unclear the extent to which the availability of various nutrients in the soil jointly influences the dynamics of plant nutrition, including nutrient acquisition strategies (e.g., reliance on mycorrhizal symbiosis), nutritional status, and nutrient resorption during senescence. We investigated the interactive effects of N, P, and K soil enrichment on the nutritional dynamics of Nothofagus antarctica using a factorial design. The experiment included 32 plots with eight fertilization treatments (N, P, K, NP, NK, PK, NPK, and control) across four blocks. We collected root samples to measure mycorrhizal colonization, and leaf samples for specific leaf area (SLA), nutrient content, resorption efficiency and proficiency. Fertilization increased soil nutrient availability, and decreased mycorrhizal colonization. This suggests that plants may no longer need to invest in mycorrhizas, as nutrients are more readily accessible. Fertilization improved nutritional status and, at senescence, N resorption was reduced by nitrogen addition, but not P and K, indicating that N. antarctica might only be limited by N. Nutrient addition, a predicted consequence of global change, facilitated plants nutrient uptake, either alleviating nutritional needs (N) or promoting luxury consumption (P and K), and disrupted the forest’s mycorrhizal networks. This could potentially disrupt long-term ecosystem services such as carbon sequestration and nutrient cycling. Our results highlight the need for targeted nutrient management strategies in forest ecosystems to mitigate the effects of global change.
Data Availability
The datasets generated during and analyzed during the current study are available in the Figshare repository, https://figshare.com/s/c6b5c5db9b1d75409aa0.
References
Aerts R (1996) Nutrient resorption from senescing leaves of perennials: are there general patterns? J Ecol 84:597–608. https://doi.org/10.2307/2261481
Agerer R (1987) Colour atlas of ectomycorrhizae: with Glossary. Delivery 2. 1th-5th Del ed. Einhorn-Verl. Dietenberger, Schwäbisch Gmünd
Agnihotri R, Sharma MP, Prakash A, Ramesh A, Bhattacharjya S, Patra AK, Manna MC, Kurganova I, Kuzyakov Y (2022) Glycoproteins of arbuscular mycorrhiza for soil carbon sequestration: review of mechanisms and controls. Sci Total Environ 806:150571. https://doi.org/10.1016/j.scitotenv.2021.150571
Almeida HJ, Pancelli MA, Prado RM, Cavalcante VS, Cruz FJR (2015) Effect of potassium on nutritional status and productivity of peanuts in succession with sugar cane. J Soil Sci Plant Nutr 0–0. https://doi.org/10.4067/S0718-95162015005000001
Asensio V, Domec J-C, Nouvellon Y, Laclau J-P, Bouillet J-P, Jordan-Meille L, Lavres J, Rojas JD, Guillemot J, Abreu-Junior CH (2020) Potassium fertilization increases hydraulic redistribution and water use efficiency for stemwood production in Eucalyptus grandis plantations. Environ Exp Bot 176:104085. https://doi.org/10.1016/j.envexpbot.2020.104085
Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (2009) Mycorrhizas - Functional processes and ecological impact. Springer, Berlin Heidelberg, Berlin, Heidelberg
Bahr A, Ellström M, Bergh J, Wallander H (2015) Nitrogen leaching and ectomycorrhizal nitrogen retention capacity in a Norway spruce forest fertilized with nitrogen and phosphorus. Plant Soil 390:323–335. https://doi.org/10.1007/s11104-015-2408-6
Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear Mixed-Effects models using lme4. J Stat Soft 67. https://doi.org/10.18637/jss.v067.i01
Baum C, Makeschin F (2000) Effects of nitrogen and phosphorus fertilization on mycorrhizal formation of two Poplar clones (Populus trichocarpa and P. tremula x tremuloides). J Plant Nutr Soil Sci 163:491–497. https://doi.org/10.1002/1522-2624(200010)163:5%3C491::AID-JPLN491%3E3.0.CO;2-3
Becquer A, Guerrero-Galán C, Eibensteiner JL, Houdinet G, Bücking H, Zimmermann SD, Garcia K (2019) The ectomycorrhizal contribution to tree nutrition. In Advances in Botanical Research (Vol. 89, pp. 77–126). Academic Press. https://doi.org/10.1016/bs.abr.2018.11.003
Bicharanloo B, Shirvan MB, Keitel C, Dijkstra FA (2019) Nitrogen and phosphorus availability affect wheat carbon allocation pathways: rhizodeposition and mycorrhizal symbiosis. Soil Res 58:125–136. https://doi.org/10.1071/SR19183
Bowles TM, Barrios-Masias FH, Carlisle EA, Cavagnaro TR, Jackson LE (2016) Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Sci Total Environ 566:1223–1234. https://doi.org/10.1016/j.scitotenv.2016.05.178
Brant AN, Chen HYH (2015) Patterns and mechanisms of nutrient resorption in plants. Crit Rev Plant Sci 34:471–486. https://doi.org/10.1080/07352689.2015.1078611
Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59(1):39–46. https://doi.org/10.2134/agronmonogr9.2.2ed.c31
Bremner JM, Mulvaney CS (1982) Nitrogen—total. In: Methods of soil analysis: part 2 chemical and microbiological properties, 9:595–624. https://doi.org/10.2134/agronmonogr9.2.2ed.c31
Bücking H, Kafle A (2015) Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: current knowledge and research gaps. Agronomy 5:587–612. https://doi.org/10.3390/agronomy5040587
Buotte PC, Law BE, Ripple WJ, Berner LT (2020) Carbon sequestration and biodiversity co-benefits of preserving forests in the Western United States. Ecol Appl 30:e02039. https://doi.org/10.1002/eap.2039
Cooper N, Brady E, Steen H, Bryce R (2016) Aesthetic and spiritual values of ecosystems: recognising the ontological and axiological plurality of cultural ecosystem ‘services.’ Ecosyst Serv 21:218–229. https://doi.org/10.1016/j.ecoser.2016.07.014
Coulin C, Aizen MA, Garibaldi LA (2019) Contrasting responses of plants and pollinators to woodland disturbance: flowers and pollinators response to disturbance. Austral Ecol 44:1040–1051. https://doi.org/10.1111/aec.12771
Daou L, Garnier É, Shipley B (2021) Quantifying the relationship linking the community-weighted means of plant traits and soil fertility. Ecology 102:e03454. https://doi.org/10.1002/ecy.3454
de Oliveira Carvalho A, Neves AHB, Luvison M, Guimarães ZTM, dos Santos VAHF, Ferreira MJ (2022) Short-term effects of phosphorus fertilization on Amazonian tree species in a mixed plantation. New Forests 53:851–869. https://doi.org/10.1007/s11056-021-09890-x
Diehl P, Mazzarino MJ, Funes F, Fontenla S, Gobbi M, Ferrari J (2003) Nutrient conservation strategies in native Andean-Patagonian forests. J Veg Sci 14(1):63–70
Diehl P, Mazzarino MJ, Fontenla S (2008) Plant limiting nutrients in Andean-Patagonian woody species: effects of interannual rainfall variation, soil fertility and mycorrhizal infection. For Ecol Manage 255:2973–2980. https://doi.org/10.1016/j.foreco.2008.02.003
do Carmo DL, Silva CA, de Lima JM, Pinheiro GL (2016) Electrical conductivity and chemical composition of soil solution: comparison of solution samplers in tropical soils. Rev Bras Ciênc Solo 40. https://doi.org/10.1590/18069657rbcs20140795
Fang F, Wang C, Wu F, Tang M, Doughty R (2020) Arbuscular mycorrhizal fungi mitigate nitrogen leaching under Poplar seedlings. Forests 11:325. https://doi.org/10.3390/f11030325
Feng H, Guo J, Peng C, Kneeshaw D, Roberge G, Pan C, Ma X, Zhou D, Wang W (2023) Nitrogen addition promotes terrestrial plants to allocate more biomass to aboveground organs: a global meta-analysis. Glob Chang Biol 29:3970–3989. https://doi.org/10.1111/gcb.16731
Fernandez CW, Langley JA, Chapman S, McCormack ML, Koide RT (2016) The decomposition of ectomycorrhizal fungal necromass. Soil Biol Biochem 93:38–49. https://doi.org/10.1016/j.soilbio.2015.10.017
Fioroni F, Fernández NV, Martínez LC, Garibaldi LA (2024) Soil eutrophication reduces fungal colonization in Berberis microphylla roots in patagonia. (Argentina) Symbiosis 94(2):219–227. https://doi.org/10.1007/s13199-024-01026-x
Firn J, McGree JM, Harvey E et al (2019) Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nat Ecol Evol 3:400–406. https://doi.org/10.1038/s41559-018-0790-1
Funk JL, Larson JE, Ames GM, Butterfield BJ, Cavender-Bares J, Firn J, Laughlin DC, Sutton‐Grier AE, Williams L, Wright J (2017) Revisiting the holy grail: using plant functional traits to understand ecological processes. Biol Rev 92:1156–1173. https://doi.org/10.1111/brv.12275
Gandini AMM, Grazziotti PH, Rossi MJ, Grazziotti DCFS, Gandini EMM, Silva EDB, Ragonezi C (2015) Growth and nutrition of eucalypt rooted cuttings promoted by ectomycorrhizal fungi in commercial nurseries. Rev Bras Cienc Solo 39:1554–1565. https://doi.org/10.1590/01000683rbcs20150075
Geremew D (2021) Review on nutrient Management, Cycles, flows and balances in different farming systems. JBAH. https://doi.org/10.7176/JBAH/11-18-03
Goldenberg MG, Oddi FJ, Gowda JH et al (2020) Effects of firewood harvesting intensity on biodiversity and ecosystem services in shrublands of Northern Patagonia. Forest Ecosystems 7:47. https://doi.org/10.1186/s40663-020-00255-y
Goll DS, Bauters M, Zhang H, Ciais P, Balkanski Y, Wang R, Verbeeck H (2023) Atmospheric phosphorus deposition amplifies carbon sinks in simulations of a tropical forest in central Africa. New Phytol 237:2054–2068. https://doi.org/10.1111/nph.18535
Hao T, Zhu Q, Zeng M, Shen J, Shi X, Liu X, Zhang F, de Vries W (2019) Quantification of the contribution of nitrogen fertilization and crop harvesting to soil acidification in a wheat-maize double cropping system. Plant Soil 434:167–184. https://doi.org/10.1007/s11104-018-3760-0
Harpole WS, Sullivan LL, Lind EM (2016) Addition of multiple limiting resources reduces grassland diversity. Nature 537:93–96. https://doi.org/10.1038/nature19324
Hartig F (2020) DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R Package Version 03 3
Hautier Y, Zhang P, Loreau M et al (2020) General destabilizing effects of eutrophication on grassland productivity at multiple spatial scales. Nat Commun 11:5375. https://doi.org/10.1038/s41467-020-19252-4
Hawkins BJ, Jones MD, Kranabetter JM (2015) Ectomycorrhizae and tree seedling nitrogen nutrition in forest restoration. New Forests 46:747–771. https://doi.org/10.1007/s11056-015-9488-2
Häyhä T, Franzese PP, Paletto A, Fath BD (2015) Assessing, valuing, and mapping ecosystem services in alpine forests. Ecosyst Serv 14:12–23. https://doi.org/10.1016/j.ecoser.2015.03.001
Heinrich VHA, Dalagnol R, Cassol HLG, Rosan TM, de Almeida CT, Silva Junior CHL, Campanharo WA, House JI, Sitch S, Hales TC, Adami M, Anderson LO, Aragão LEOC (2021) Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change. Nat Commun 12:1785. https://doi.org/10.1038/s41467-021-22050-1
Hill J (1980) The remobilization of nutrients from leaves. J Plant Nutr 2:407–444. https://doi.org/10.1080/01904168009362788
Hobbie SE (2015) Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol Evol 30:357–363. https://doi.org/10.1016/j.tree.2015.03.015
Högberg MN, Skyllberg U, Högberg P, Knicker H (2020) Does ectomycorrhiza have a universal key role in the formation of soil organic matter in boreal forests? Soil Biol Biochem 140:107635. https://doi.org/10.1016/j.soilbio.2019.107635
Hommels CH, Kuiper PJC, Tanczos OG (1989) Luxury consumption and specific utilization rates of three macroelements in two Taraxacum microspecies of contrasting mineral ecology. Physiol Plant 77:569–578. https://doi.org/10.1111/j.1399-3054.1989.tb05393.x
Hong S, Gan P, Chen A (2019) Environmental controls on soil pH in planted forest and its response to nitrogen deposition. Environ Res 172:159–165. https://doi.org/10.1016/j.envres.2019.02.020
Hou S-L, Hättenschwiler S, Yang J-J, Sistla S, Wei H-W, Zhang Z-W, Hu Y-Y, Wang R-Z, Cui S-Y, Lü X-T, Han X-G (2021) Increasing rates of long-term nitrogen deposition consistently increased litter decomposition in a semi-arid grassland. New Phytol 229:296–307. https://doi.org/10.1111/nph.16854
Hu R, Liu T, Zhang Y, Zheng R, Guo J (2023) Leaf nutrient resorption of two life-form tree species in urban gardens and their response to soil nutrient availability. PeerJ 19:11:e15738. https://doi.org/10.7717/peerj.15738
Jeewani PH, Luo Y, Yu G, Fu Y, He X, Van Zwieten L, Liang C, Kumar A, He Y, Kuzyakov Y, Qin H, Guggenberger G, Xu J (2021) Arbuscular mycorrhizal fungi and goethite promote carbon sequestration via hyphal-aggregate mineral interactions. Soil Biol Biochem 162:108417. https://doi.org/10.1016/j.soilbio.2021.108417
Kekane S (2015) A review on physico-chemical properties of soil. 29–32
Killingbeck KT (1996) Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77:1716–1727. https://doi.org/10.2307/2265777
Kim C (2008) Soil carbon storage, litterfall and CO2 efflux in fertilized and unfertilized larch (Larix leptolepis) plantations. Ecol Res 23:757–763. https://doi.org/10.1007/s11284-007-0436-2
Kjeldahl J (1883) Neue methode Zur bestimmung des stickstoffs in organischen Körpern. Fresenius’ Zeitschrift für analytische Chemie 22:366–382. https://doi.org/10.1007/BF01338151
Konvalinková T, Püschel D, Řezáčová V, Gryndlerová H, Jansa J (2017) Carbon flow from plant to arbuscular mycorrhizal fungi is reduced under phosphorus fertilization. Plant Soil 419:319–333. https://doi.org/10.1007/s11104-017-3350-6
Lambers H, Oliveira RS (2019) Plant physiological ecology. Springer International Publishing, Cham
Lenth R, Singmann H, Love J, Buerkner P, Herve M (2018) emmeans: Estimated marginal means, aka least-squares means (R package, Version 1.4)[Computer software]
Li S, Dong X, Liu D, Liu L, He F (2016) Decreased soil nitrification rate with addition of Biochar to the acid soils. https://doi.org/10.15640/jaes.v4n2a10. JAES 4:
Li M, Wang T, Li L, Gao Q, Gao Y, Liu S, Wang H (2019) Effects of long-term nitrogen fertilizer application on rhizosphere microorganisms under different soil types. Pol J Environ Stud 28:1771–1784. https://doi.org/10.15244/pjoes/89583
Li X, Bo H, Zhu J, Zhang J, Hu J, Mu F, Nie L (2022) Reducing nutrient loss caused by thinning: effects of four composts of forest thinning shreds on soil nutrients and tree growth in semimature Pinus tabuliformis Carr. Beijing China. Forests 13:702. https://doi.org/10.3390/f13050702
Lin C, Wang Y, Liu M, Li Q, Xiao W, Song X (2020) Effects of nitrogen deposition and phosphorus addition on arbuscular mycorrhizal fungi of Chinese fir (Cunninghamia lanceolata). Sci Rep 10:12260. https://doi.org/10.1038/s41598-020-69213-6
Lindberg N, Persson T (2004) Effects of long-term nutrient fertilisation and irrigation on the microarthropod community in a boreal Norway spruce stand. For Ecol Manage 188:125–135. https://doi.org/10.1016/j.foreco.2003.07.012
Liu F, Stützel H (2004) Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Sci Hortic 102:15–27. https://doi.org/10.1016/j.scienta.2003.11.014
Lozano YM, Aguilar-Trigueros CA, Flaig IC, Rillig MC (2020) Root trait responses to drought are more heterogeneous than leaf trait responses. Funct Ecol 34:2224–2235. https://doi.org/10.1111/1365-2435.13656
Malik AA, Chowdhury S, Schlager V, Oliver A, Puissant J, Vazquez PGM, Jehmlich N, von Bergen M, Griffiths RI, Gleixner G (2016) Soil fungal:bacterial ratios are linked to altered carbon cycling. Front Microbiol 7. https://doi.org/10.3389/fmicb.2016.01247
Matos FAR, Magnago LFS, Aquila Chan Miranda C, de Menezes LFT, Gastauer M, Safar NVH, Schaefer CEGR, da Silva MP, Simonelli M, Edwards FA, Martins SV, Meira-Neto JAA, Edwards DP (2020) Secondary forest fragments offer important carbon and biodiversity cobenefits. Glob Change Biol 26:509–522. https://doi.org/10.1111/gcb.14824
McCarty GW (1999) Modes of action of nitrification inhibitors. Biol Fertil Soils 29:1–9. https://doi.org/10.1007/s003740050518
Meyer G, Bell MJ, Doolette CL, Brunetti G, Zhang Y, Lombi E, Kopittke PM (2020) Plant-available phosphorus in highly concentrated fertilizer bands: effects of soil type, phosphorus form, and coapplied potassium. J Agric Food Chem 68:7571–7580. https://doi.org/10.1021/acs.jafc.0c01287
Nagy R, Drissner D, Amrhein N, Jakobsen I, Bucher M (2009) Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. New Phytol 181:950–959. https://doi.org/10.1111/j.1469-8137.2008.02721.x
Nelson DW, Sommers LE (1973) Determination of total nitrogen in plant material. Agron J 65:109–112. https://doi.org/10.2134/agronj1973.00021962006500010033x
Nouri E, Breuillin-Sessoms F, Feller U, Reinhardt D (2014) Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. PLoS ONE 9:e90841. https://doi.org/10.1371/journal.pone.0090841
Novozamsky I, Houba VJG (1987) Critical evaluation of soil testing methods for K. In: Proc 20th Coll Int Potash Inst Baden bei Wien, Austria IPI, Bern:165–185
Pahalvi HN, Rafiya L, Rashid S, Nisar B, Kamili AN (2021) Chemical fertilizers and their impact on soil health. In: Dar GH, Bhat RA, Mehmood MA, Hakeem KR (eds) Microbiota and biofertilizers, vol 2. Springer International Publishing, Cham, pp 1–20
Pan Y, Birdsey RA, Fang J et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993. https://doi.org/10.1126/science.1201609
Pei G, Liu J, Peng B, Gao D, Wang C, Dai W, Jiang P, Bai E (2019) Nitrogen, lignin, C/N as important regulators of gross nitrogen release and immobilization during litter decomposition in a temperate forest ecosystem. Ecol Manag 440:61–69. https://doi.org/10.1016/j.foreco.2019.03.001
Penuelas J, Sardans J, Alcaniz JM, Poch JM (2009) Increased eutrophication and nutrient imbalances in the agricultural soil of NE Catalonia, Spain. J Environ Biol 30:841–846
Peri PL, Ormaechea SG (2013) Relevamiento de Los bosques nativos de ñire (Nothofagus antarctica) En Santa cruz: base Para Su conservación y Manejo. Instituto Nacional de Tecnología Agropecuaria
Pinheiro J, Bates D, R Core Team (1999) nlme: Linear and Nonlinear Mixed Effects Models. 3.1–166
Plassard C, Dell B (2010) Phosphorus nutrition of mycorrhizal trees, tree physiology. 30:1129–1139. https://doi.org/10.1093/treephys/tpq063
Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588. https://doi.org/10.1111/j.1469-8137.2009.02830.x
Prescott CE, Kishchuk BE, Weetman GF (1995) Long-term effects of repeated N fertilization and straw application in a Jack pine forest. 3. Nitrogen availability in the forest floor. Can J Res 25:1991–1996. https://doi.org/10.1139/x95-215
Prieto I, León-Sánchez L, Nicolás E, Nortes P, Querejeta JI (2023) Warming reduces both photosynthetic nutrient use efficiency and water use efficiency in mediterranean shrubs. Warming reduces nutrient use efficiency. Environ Exp Bot 210:105331. https://doi.org/10.1016/j.envexpbot.2023.105331
Pu C, Yang G, Li P, Ge Y, Garran TA, Zhou X, Shen Y, Zheng H, Chen M, Huang L (2022) Arbuscular mycorrhiza alters the nutritional requirements in Salvia miltiorrhiza and low nitrogen enhances the mycorrhizal efficiency. Sci Rep 12:19633. https://doi.org/10.1038/s41598-022-17121-2
Querejeta JI, Prieto I, Armas C, Casanoves F, Diémé JS, Diouf M, Yossi H, Kaya B, Pugnaire FI, Rusch GM (2022) Higher leaf nitrogen content is linked to tighter stomatal regulation of transpiration and more efficient water use across dryland trees. New Phytol 235:1351–1364. https://doi.org/10.1111/nph.18254
R Core Team (2022) R: A Language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–391. https://doi.org/10.1007/BF01972080
Reich PB (2014) The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J Ecol 102:275–301. https://doi.org/10.1111/1365-2745.12211
Reque JA, Sarasola M, Gyenge J, Fernández ME (2007) Caracterización silvícola de ñirantales Del Norte de La patagonia Para La gestión forestal sostenible. Bosque (Valdivia) 28. https://doi.org/10.4067/S0717-92002007000100006
Runting RK, Bryan BA, Dee LE, Maseyk FJF, Mandle L, Hamel P, Wilson KA, Yetka K, Possingham HP, Rhodes JR (2017) Incorporating climate change into ecosystem service assessments and decisions: a review. Glob Change Biol 23:28–41. https://doi.org/10.1111/gcb.13457
Sae-Tun O, Bodner G, Rosinger C, Zechmeister-Boltenstern S, Mentler A, Keiblinger K (2022) Fungal biomass and microbial necromass facilitate soil carbon sequestration and aggregate stability under different soil tillage intensities. Appl Soil Ecol 179:104599. https://doi.org/10.1016/j.apsoil.2022.104599
Santander C, Aroca R, Ruiz-Lozano JM, Olave J, Cartes P, Borie F, Cornejo P (2017) Arbuscular mycorrhiza effects on plant performance under osmotic stress. Mycorrhiza 27:639–657. https://doi.org/10.1007/s00572-017-0784-x
Sathongkaen W, Vorasoot N, Kaewpradit W, Janket A, Holbrook CC, Jogloy S (2024) Nutrient uptake and nutrient use efficiency of Valencia peanut genotypes with different levels of drought tolerance under terminal drought. J Plant Nutr 47:1697–1709. https://doi.org/10.1080/01904167.2024.2319164
Satti P, Mazzarino MJ, Roselli L, Crego P (2007) Factors affecting soil P dynamics in temperate volcanic soils of Southern Argentina. Geoderma 139(1–2):229–240. https://doi.org/10.1016/j.geoderma.2007.02.005
Schlesinger WH, Dietze MC, Jackson RB, Phillips RP, Rhoades CC, Rustad LE, Vose JM (2016) Forest biogeochemistry in response to drought. Glob Change Biol 22:2318–2328. https://doi.org/10.1111/gcb.13105
Schweigert M, Herrmann S, Miltner A, Fester T, Kästner M (2015) Fate of ectomycorrhizal fungal biomass in a soil bioreactor system and its contribution to soil organic matter formation. Soil Biol Biochem 88:120–127. https://doi.org/10.1016/j.soilbio.2015.05.012
Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70:555–569. https://doi.org/10.2136/sssaj2004.0347
Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Elsevier
Smith SE, Anderson IC, Smith FA (2015) Mycorrhizal associations and phosphorus acquisition: from cells to ecosystems. Annual plant reviews volume 48: Phosphorus metabolism in plants, 48, 409–439. https://doi.org/10.1002/9781118958841.ch14
Stock SC, Koester M, Boy J, Godoy R, Nájera F, Matus F, Merino C, Abdallah K, Leuschner C, Spielvogel S, Gorbushina AA, Kuzyakov Y, Dippold MA (2021) Plant carbon investment in fine roots and arbuscular mycorrhizal fungi: a cross-biome study on nutrient acquisition strategies. Sci Total Environ 781:146748. https://doi.org/10.1016/j.scitotenv.2021.146748
Sun Y, Gu J, Zhuang H, Wang Z (2010) Effects of ectomycorrhizal colonization and nitrogen fertilization on morphology of root tips in a Larix Gmelinii plantation in Northeastern China. Ecol Res 25:295–302. https://doi.org/10.1007/s11284-009-0654-x
Sun X, Li D, Lü X, Fang Y, Ma Z, Wang Z, Chu C, Li M, Chen H (2023) Widespread controls of leaf utrient resorption by nutrient limitation and stoichiometry. Funct Ecol 37(6):1653–1662. https://doi.org/10.1111/1365-2435.14318
Suz LM, Martín MP, Fischer CR, Bonet JA, Colinas C (2010) Can NPK fertilizers enhance seedling growth and mycorrhizal status of Tuber melanosporum-inoculated Quercus ilex seedlings? Mycorrhiza 20:349–360. https://doi.org/10.1007/s00572-009-0289-3
Taniguchi T, Kanzaki N, Tamai S, Yamanaka N, Futai K (2007) Does ectomycorrhizal fungal community structure vary along a Japanese black pine (Pinus thunbergii) to black locust (Robinia pseudoacacia). gradient? New Phytol 173:322–334. https://doi.org/10.1111/j.1469-8137.2006.01910.x
Tian D, Jiang L, Ma S et al (2017) Effects of nitrogen deposition on soil microbial communities in temperate and subtropical forests in China. Sci Tot Environ 607–608:1367–1375. https://doi.org/10.1016/j.scitotenv.2017.06.057
Tian D, Du E, Jiang L, Ma S, Zeng W, Zou A, Feng C, Xu L, Xing A, Wang W, Zheng C, Ji C, Shen H, Fang J (2018) Responses of forest ecosystems to increasing N deposition in china: a critical review. Environ Pollut 243:75–86. https://doi.org/10.1016/j.envpol.2018.08.010
Turcios AE, Papenbrock J, Tränkner M (2021) Potassium, an important element to improve water use efficiency and growth parameters in Quinoa (Chenopodium quinoa) under saline conditions. J Agron Crop Sci 207:618–630. https://doi.org/10.1111/jac.12477
Urbina I, Grau O, Sardans J et al (2021) High foliar K and P resorption efficiencies in old-growth tropical forests growing on nutrient-poor soils. Ecol Evol 11:8969–8982. https://doi.org/10.1002/ece3.7734
Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB (2012) Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol Monogr 82(2):205–220. https://doi.org/10.1890/11-0416.1
Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7(3):737–750. https://doi.org/10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2
Wallander H, Ekblad A (2015) The importance of ectomycorrhizal networks for nutrient retention and carbon sequestration in forest ecosystems. In: Horton TR (ed) Mycorrhizal networks. Springer Netherlands, Dordrecht, pp 69–90
Wang L, Katzensteiner K, Schume H, Van Loo M, Godbold DL (2016) Potassium fertilization affects the distribution of fine roots but does not change ectomycorrhizal community structure. Ann For Sci 73:691–702. https://doi.org/10.1007/s13595-016-0556-3
Wang W, Shi J, Xie Q, Jiang Y, Yu N, Wang E (2017) Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Mol Plant 10:1147–1158. https://doi.org/10.1016/j.molp.2017.07.012
Wang C, Tian B, Yu Z, Ding J (2020) Effect of different combinations of phosphorus and nitrogen fertilization on arbuscular mycorrhizal fungi and aphids in wheat. Insects 11:365. https://doi.org/10.3390/insects11060365
Weiskopf SR, Rubenstein MA, Crozier LG et al (2020) Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci Total Environ 733:137782. https://doi.org/10.1016/j.scitotenv.2020.137782
Wellstein C, Poschlod P, Gohlke A, Chelli S, Campetella G, Rosbakh S, Canullo R, Kreyling J, Jentsch A, Beierkuhnlein C (2017) Effects of extreme drought on specific leaf area of grassland species: a meta-analysis of experimental studies in temperate and sub-Mediterranean systems. Glob Change Biol 23:2473–2481. https://doi.org/10.1111/gcb.13662
Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N, Poorter H, Villar R, Warton DI, Westoby M (2005) Assessing the generality of global leaf trait relationships. New Phytol 166:485–496. https://doi.org/10.1111/j.1469-8137.2005.01349.x
Yahaya SM, Mahmud AA, Abdullahi M, Haruna A (2023) Recent advances in the chemistry of nitrogen, phosphorus and potassium as fertilizers in soil: a review. Pedosphere 33:385–406. https://doi.org/10.1016/j.pedsph.2022.07.012
Yan T, Zhu J, Yang K (2018) Leaf nitrogen and phosphorus resorption of woody species in response to climatic conditions and soil nutrients: a meta-analysis. J Forestry Res 29:905–913. https://doi.org/10.1007/s11676-017-0519-z
Yu L, Song M, Lei Y, Korpelainen H, Niinemets Ü, Li C (2019) Effects of competition and phosphorus fertilization on leaf and root traits of late-successional conifers Abies Fabri and Picea brachytyla. Environ Exp Bot 162:14–24. https://doi.org/10.1016/j.envexpbot.2019.02.004
Yuan ZY, Chen HYH (2009) Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation. Glob Ecol Biogeogr 18:11–18. https://doi.org/10.1111/j.1466-8238.2008.00425.x
Zangani E, Afsahi K, Shekari F, Mac Sweeney E, Mastinu A (2021) Nitrogen and phosphorus addition to soil improves seed yield, foliar stomatal conductance, and the photosynthetic response of rapeseed (Brassica napus L). Agriculture 11:483. https://doi.org/10.3390/agriculture11060483
Zhang M, Luo Y, Meng Q, Han W (2022) Correction of leaf nutrient resorption efficiency on the mass basis. J Plant Ecol 15(6):1125–1132. https://doi.org/10.1093/jpe/rtac041
Acknowledgements
We are grateful to Lic. Matías A. Soto Mancilla and Lic. Luciana A. Ebrecht for participating in the sampling for this study, and to Dra. Paula Zermoglio and Lic. Luciana A. Ebrecht for offering insights and reviewing this research.
Funding
This work was supported by grants from FONCYT (Fondo para la Investigación Científica y Tecnológica, PICT 2018–4029, PICT 2019 − 0393), and UNRN (Universidad Nacional de Río Negro, PI 40-B-892).
Author information
Authors and Affiliations
Contributions
F. Fioroni: Conceptualization, methodology, formal analysis, writing – original draft. N. V. Fernández: Conceptualization, methodology, writing – review and editing, funding acquisition, supervision. M. Gambino: Methodology, writing – review and editing. L. C. Martínez: Methodology, writing – review and editing. L. A. Garibaldi: Conceptualization, writing – review and editing, funding acquisition, supervision.
Corresponding author
Ethics declarations
Conflict of interest and competing interests
The authors have no conflict of interests nor competing interests to declare that are relevant to the content of this article.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Fioroni, F., Fernández, N.V., Gambino, M. et al. Differential Effects of Nitrogen, Phosphorus and Potassium Soil Enrichment on Mycorrhization, Nutritional Status and Nutrient Resorption in Nothofagus Antarctica. J Soil Sci Plant Nutr (2025). https://doi.org/10.1007/s42729-025-02774-5
Received:
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1007/s42729-025-02774-5