+
Skip to main content

Advertisement

Log in

Optimized Design of Plasmonic Biosensor for Cancer Detection: Core Configuration and Nobel Material Coating Innovation

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this research, a new model of the photonic crystal fiber (PCF) biosensor, which uses the surface plasmon resonance (SPR) principle, is presented, with a focus on effectively identifying various cancerous cells in the human body. We specifically targeted six different types of cells, namely, Basal, Hela, Jurkat, PC 12, MDA MB 231, and MCF 7, which are linked to skin, cervical, blood, adrenal gland, and two types of breast cancers. The biosensor works by detecting shifts in resonance wavelength (RW) between healthy and infected cells. Our exploration involved a dual-mode investigation, considering both transverse magnetic (TM) and transverse electric (TE) polarization. The wavelength sensitivities (\({{\varvec{S}}}_{{\varvec{W}}}\)) of 4000, 3333.33, 6071.42, 6428.57, 8428.57, and 13,571.42 nm/RIU and 3520, 2916.66, 5000, 7142.85, 8571.42, and 12,857.14 nm/RIU, and amplitude sensitivities (\({{\varvec{S}}}_{{\varvec{A}}}\)) of 2482, 6124, 9773, 13,452, 15,289, and 18,651 RIU−1 and 1467, 2683, 5845, 7243, 10,089, and 16,864 RIU−1, are obtained for TM and TE polarizations, respectively. A sensor resolution (\({{\varvec{S}}}_{{\varvec{R}}}\)) of the order 10−6 is achieved for both polarizations. Owing to its high sensing parameters and a novel combination of materials, the proposed dual-mode PCF SPR sensor shows significant promise as a valuable tool for perceiving cancer cells, potentially aiding in the early detection and management of various forms of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Loud JT, Murphy J (2017) Cancer screening and early detection in the 21st century. Semin Oncol Nurs 33(2):121–128. https://doi.org/10.1016/j.soncn.2017.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wilson CM, Tobin S, Young RC (2004) The exploding worldwide cancer burden. Int J Gynecol Cancer 14(1). https://doi.org/10.1136/ijgc-00009577-200401000-00001

  3. Kumar A, Kumar A, Dubey SK, Yadav PK, Srivastava SK (2023) Highly sensitive detection of carcinogenic biomarkers MCF-7 using graphene oxide-based SPR biosensor. Diam Relat Mater 139:110321. https://doi.org/10.1016/j.diamond.2023.110321

    Article  CAS  Google Scholar 

  4. Baraty F, Hamedi S (2023) Label-free cancer cell biosensor based on photonic crystal ring resonator. Results in Physics 46:106317. https://doi.org/10.1016/j.rinp.2023.106317

    Article  Google Scholar 

  5. Bassett JJ et al (2018) Assessment of cytosolic free calcium changes during ceramide-induced cell death in MDA-MB-231 breast cancer cells expressing the calcium sensor GCaMP6m. Cell Calcium 72:39–50. https://doi.org/10.1016/j.ceca.2018.02.003

    Article  CAS  PubMed  Google Scholar 

  6. Belete TM (2021) The current status of gene therapy for the treatment of cancer. Biol: Targets Ther 15:67–77. https://doi.org/10.2147/BTT.S302095

    Article  Google Scholar 

  7. Klein AP (2021) Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors. Nat Rev Gastroenterol Hepatol 18(7):493–502. https://doi.org/10.1038/s41575-021-00457-x

    Article  PubMed  PubMed Central  Google Scholar 

  8. Castro-Espin C, Agudo A (2022) The role of diet in prognosis among cancer survivors: a systematic review and meta-analysis of dietary patterns and diet interventions. Nutrients 14(2):2. https://doi.org/10.3390/nu14020348

    Article  Google Scholar 

  9. Turner MC et al (2020) Outdoor air pollution and cancer: an overview of the current evidence and public health recommendations. CA: A Cancer J Clin 70(6):460–479. https://doi.org/10.3322/caac.21632

    Article  Google Scholar 

  10. Kumar Shakya A, Singh S (2022) State of the art in fiber optics sensors for heavy metals detection. Opt Laser Technol 153:108246. https://doi.org/10.1016/j.optlastec.2022.108246

    Article  CAS  Google Scholar 

  11. Łukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanisławek A (2021) Breast cancer—epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—an updated review. Cancers 13(17):17. https://doi.org/10.3390/cancers13174287

    Article  CAS  Google Scholar 

  12. Faridi R, Zahra A, Khan K, Idrees M (2011) Oncogenic potential of human papillomavirus (HPV) and its relation with cervical cancer. Virol J 8(1):269. https://doi.org/10.1186/1743-422X-8-269

    Article  PubMed  PubMed Central  Google Scholar 

  13. Castle PE, Einstein MH, Sahasrabuddhe VV (2021) Cervical cancer prevention and control in women living with human immunodeficiency virus. CA: A Cancer J Clin 71(6):505–526. https://doi.org/10.3322/caac.21696

    Article  Google Scholar 

  14. McGovern J, Dolan RD, Horgan PG, Laird BJ, McMillan DC (2021) Computed tomography-defined low skeletal muscle index and density in cancer patients: observations from a systematic review. J Cachexia Sarcopenia Muscle 12(6):1408–1417. https://doi.org/10.1002/jcsm.12831

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shakya AK, Vidyarthi A (2024) Comprehensive study of compression and texture integration for digital imaging and communications in medicine data analysis. Technologies 12(2):2. https://doi.org/10.3390/technologies12020017

    Article  Google Scholar 

  16. Reginelli A et al (2021) Endorectal ultrasound and magnetic resonance imaging for rectal cancer staging: a modern multimodality approach. J Clin Med 10(4):4. https://doi.org/10.3390/jcm10040641

    Article  Google Scholar 

  17. Martins I et al (2021) Liquid biopsies: applications for cancer diagnosis and monitoring. Genes 12(3):3. https://doi.org/10.3390/genes12030349

    Article  CAS  Google Scholar 

  18. Walker SM, Lim I, Lindenberg L, Mena E, Choyke PL, Turkbey B (2020) Positron emission tomography (PET) radiotracers for prostate cancer imaging. Abdom Radiol 45(7):2165–2175. https://doi.org/10.1007/s00261-020-02427-4

    Article  Google Scholar 

  19. Ramola A, Marwaha A, Singh S (2021) Design and investigation of a dedicated PCF SPR biosensor for CANCER exposure employing external sensing. Appl Phys A 127(9):643. https://doi.org/10.1007/s00339-021-04785-2

    Article  CAS  Google Scholar 

  20. Chaudhary VS, Kumar D, Kumar S (2021) Gold-immobilized photonic crystal fiber-based SPR biosensor for detection of malaria disease in human body. IEEE Sens J 21(16):17800–17807. https://doi.org/10.1109/JSEN.2021.3085829

    Article  CAS  Google Scholar 

  21. Das S, Sen R (2024) Photonic crystal fibre–based plasmon sensor for glucose level detection in urine. Plasmonics 19(1):65–74. https://doi.org/10.1007/s11468-023-01980-0

    Article  CAS  Google Scholar 

  22. Liu Y, Peng W (2021) Fiber-optic surface plasmon resonance sensors and biochemical applications: a review. J Lightwave Technol 39(12):3781–3791. https://doi.org/10.1109/JLT.2020.3045068

    Article  CAS  Google Scholar 

  23. Gupta A, Singh T, Singh RK, Tiwari A (2023) Numerical analysis of coronavirus detection using photonic crystal fibre–based SPR sensor. Plasmonics 18(2):577–585. https://doi.org/10.1007/s11468-022-01761-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Balamurugan AM, Parvin T, Alsalem KAJ, Ibrahim SM (2023) Refractive index based optically transparent biosensor device design for early detection of coronavirus. Opt Quant Electron 55(6):507. https://doi.org/10.1007/s11082-023-04788-8

    Article  CAS  Google Scholar 

  25. Jabin MA et al (2019) Surface plasmon resonance based titanium coated biosensor for cancer cell detection. IEEE Photonics J 11(4):1–10. https://doi.org/10.1109/JPHOT.2019.2924825

    Article  Google Scholar 

  26. Yasli A (2021) Cancer detection with surface plasmon resonance-based photonic crystal fiber biosensor. Plasmonics 16(5):1605–1612. https://doi.org/10.1007/s11468-021-01425-6

    Article  CAS  Google Scholar 

  27. Kumar Shakya A, Singh S (2022) Design of novel Penta core PCF SPR RI sensor based on fusion of IMD and EMD techniques for analysis of water and transformer oil. Measurement 188:110513. https://doi.org/10.1016/j.measurement.2021.110513

    Article  Google Scholar 

  28. Shakya AK, Ramola A, Singh S, Van V (2022) Design of an ultra-sensitive bimetallic anisotropic PCF SPR biosensor for liquid analytes sensing. Opt Express, OE 30(6):9233–9255. https://doi.org/10.1364/OE.432263

    Article  CAS  Google Scholar 

  29. Shakya AK, Singh S (2022) Design of a novel refractive index BIOSENSOR for heavy metal detection from water samples based on fusion of spectroscopy and refractive index sensing. Optik 270:169892. https://doi.org/10.1016/j.ijleo.2022.169892

    Article  CAS  Google Scholar 

  30. Shakya AK, Singh S (2024) Performance analysis of a developed optical sensing setup based on the Beer-Lambert law. Plasmonics 19(1):447–455. https://doi.org/10.1007/s11468-023-01979-7

    Article  Google Scholar 

  31. Shakya AK, Singh S (2023) Novel merger of spectroscopy and refractive index sensing for modelling hyper sensitive hexa-slotted plasmonic sensor for transformer oil monitoring in near-infrared region. Opt Quant Electron 55(9):764. https://doi.org/10.1007/s11082-023-05016-z

    Article  CAS  Google Scholar 

  32. Gu S, Sun W, Li M, Zhang T, Deng M (2022) Highly sensitive plasmonic refractive index sensor based on dual D-shaped photonic crystal fiber with aluminum nitride-silver films. Plasmonics 17(3):1129–1137. https://doi.org/10.1007/s11468-022-01609-8

    Article  CAS  Google Scholar 

  33. Jiang H, Shen T, Feng Y, Liu C, Liu X (2023) SPR-based sensor for ultra-high sensitivity high refractive index measurements in the near-infrared. Opt Quant Electron 55(13):1199. https://doi.org/10.1007/s11082-023-05484-3

    Article  Google Scholar 

  34. Shakya AK, Singh S (2022) Design of biochemical biosensor based on transmission, absorbance and refractive index. Biosens Bioelectr: X 10:100089. https://doi.org/10.1016/j.biosx.2021.100089

    Article  CAS  Google Scholar 

  35. Liang H, Feng Y, Liu H, Han W, Shen T (2022) High-performance PCF-SPR sensor coated with Ag and graphene for humidity sensing. Plasmonics 17(4):1765–1773. https://doi.org/10.1007/s11468-022-01663-2

    Article  CAS  Google Scholar 

  36. Ibrahimi KM, Kumar R, Pakhira W (2024) C-grooved dual-core PCF SPR biosensor with graphene/au coating for enhanced early cancer cell detection. Appl Phys A 130(6):439. https://doi.org/10.1007/s00339-024-07593-6

    Article  CAS  Google Scholar 

  37. Islam MR, Iftekher ANM, Etu MF, Rashmi WR, Abbas S (2023) Dual peak double resonance sensing using a dual plasmonic material PCF-SPR sensor. Plasmonics 18(3):983–993. https://doi.org/10.1007/s11468-023-01829-6

    Article  CAS  Google Scholar 

  38. Akib TBA, Mostufa S, Rana MM, Hossain MB, Islam MR (2023) A performance comparison of heterostructure surface plasmon resonance biosensor for the diagnosis of novel coronavirus SARS-CoV-2. Opt Quant Electron 55(5):448. https://doi.org/10.1007/s11082-023-04700-4

    Article  CAS  Google Scholar 

  39. Almawgani AHM et al (2023) Titanium disilicide, black phosphorus–based surface plasmon resonance sensor for dengue detection. Plasmonics 18(4):1223–1232. https://doi.org/10.1007/s11468-023-01856-3

    Article  CAS  Google Scholar 

  40. Ramola A, Marwaha A, Singh S (2023) Design of a triple-layered plasmonic biosensor for glucose monitoring from urine sample for DIABETES prevention. Mapan 38(2):511–525. https://doi.org/10.1007/s12647-022-00610-0

    Article  Google Scholar 

  41. Ramola A, Marwaha A, Singh S (2024) Pregnancy detection through modelling of dual-polarized plasmonic PREGBIOSENSOR by urine samples analysis. Plasmonics 19(1):33–49. https://doi.org/10.1007/s11468-023-01962-2

    Article  CAS  Google Scholar 

  42. Tao Y, Ye H, Ding Y, Ren X, Liu X (2022) Refractive index sensing simulations of CsPbBr 3 quantum dots/gold bilayer coated triangular-lattice photonic crystal fibers. Photonic Sens 12(3):220309. https://doi.org/10.1007/s13320-022-0641-1

    Article  CAS  Google Scholar 

  43. Venkatesan KK, Samikannu S (2024) A two-dimensional nanomaterial-based fiber optic sensor for humidity and gas sensing application in-depth review. Phys Scr 99(6):062005. https://doi.org/10.1088/1402-4896/ad439f

    Article  CAS  Google Scholar 

  44. Singh Y, Paswan MK, Raghuwanshi SK (2021) Sensitivity Enhancement of SPR sensor with the black phosphorus and graphene with bi-layer of gold for chemical sensing. Plasmonics 16(5):1781–1790. https://doi.org/10.1007/s11468-020-01315-3

    Article  CAS  Google Scholar 

  45. Kumar S, Yadav A, Kumar S, Malomed BA (2024) Design and simulation of SPR sensors by employing silicon and silicon-nitride with mono and bimetal layers for sensitivity enhancement. IEEE Sens J 24(6):7671–7680. https://doi.org/10.1109/JSEN.2024.3355766

    Article  CAS  Google Scholar 

  46. Kumar S, Yadav A, Malomed BA (2024) Bimetal thin film, semiconductors, and 2D nanomaterials in SPR biosensors: an approach to enhanced urine glucose sensing. IEEE Trans Nanobiosci 23(2):336–343. https://doi.org/10.1109/TNB.2024.3354571

    Article  CAS  Google Scholar 

  47. Yadav A, Kumar A, Sharan P, Mishra M (2023) Highly sensitive bimetallic-metal nitride SPR biosensor for urine glucose detection. IEEE Trans Nanobiosci 22(4):897–903. https://doi.org/10.1109/TNB.2023.3246535

    Article  CAS  Google Scholar 

  48. Yadav A, Kumar S, Kumar A, Sharan P (2023) Effect of 2-D nanomaterials on sensitivity of plasmonic biosensor for efficient urine glucose detection. Front Mater. https://doi.org/10.3389/fmats.2022.1106251

    Article  Google Scholar 

  49. Kumar S, Yadav A, Malomed BA (2023) High performance surface plasmon resonance based sensor using black phosphorus and magnesium oxide adhesion layer. Front Mater. https://doi.org/10.3389/fmats.2023.1131412

    Article  Google Scholar 

  50. Karki B, Pal A, Sarkar P, Yadav RB, Muduli A, Trabelsi Y (2024) ZnO-silicon enhanced surface plasmon resonance sensor for chemical sensing. SILICON. https://doi.org/10.1007/s12633-024-02973-2

    Article  Google Scholar 

  51. Bhagat B, Mehta K, Sinha TK, Baruah PK, Mukherjee K (2022) Recent advances and opportunities of plasmonic sensors. In Plasmon-enhanced light-matter interactions, P. Yu, H. Xu, and Z. M. Wang, Eds., Cham: Springer International Publishing, pp. 297–330. https://doi.org/10.1007/978-3-030-87544-2_12

  52. Raghuwanshi SK, Kumar S, Kumar R (2024) Fiber optic SPR sensor—past, present, and future In Geometric feature-based fiber optic surface plasmon resonance sensors, S. K. Raghuwanshi, S. Kumar, and R. Kumar, Eds., Singapore: Springer Nature, pp. 1–42. https://doi.org/10.1007/978-981-99-7297-5_1

  53. Divya J, Selvendran S (2023) The impact of different background materials in a D-shaped photonic crystal fiber based plasmonic sensor: a comprehensive investigation. Opt Quant Electron 55(6):520. https://doi.org/10.1007/s11082-023-04695-y

    Article  CAS  Google Scholar 

  54. Karki B, Sarkar P, Dhiman G, Srivastava G, Kumar M (2023) Platinum diselenide and graphene-based refractive index sensor for cancer detection. Plasmonics. https://doi.org/10.1007/s11468-023-02051-0

    Article  PubMed  PubMed Central  Google Scholar 

  55. Fendi FWS, Mukhtar WM, Abdullah M (2023) Surface plasmon resonance sensor for Covid-19 detection: a review on plasmonic materials. Sens Actuators, A 362:114617. https://doi.org/10.1016/j.sna.2023.114617

    Article  CAS  Google Scholar 

  56. Kumar Vyas A, Kumar Gangwar R, Kumar S (2022) Elliptical air hole PCF-based low-cost sensor for refractive index and temperature detection: design and analysis. Opt Fiber Technol 73:103060. https://doi.org/10.1016/j.yofte.2022.103060

    Article  Google Scholar 

  57. Werner WSM, Glantschnig K, Ambrosch-Draxl C (2009) Optical constants and inelastic electron-scattering data for 17 elemental metals. J Phys Chem Ref Data 38(4):1013–1092. https://doi.org/10.1063/1.3243762

    Article  CAS  Google Scholar 

  58. Yin Z et al (2022) A broadband SPR dual-channel sensor based on a PCF coated with sodium-silver for refractive index and temperature measurement. Results Phys 41:105943. https://doi.org/10.1016/j.rinp.2022.105943

    Article  Google Scholar 

  59. Singh MK, Pal S, Prajapati YK (2023) Design and analysis of an SPR sensor based on antimonene and platinum for the detection of formalin. IEEE Trans Nanobiosci 22(1):106–112. https://doi.org/10.1109/TNB.2022.3159532

    Article  CAS  Google Scholar 

  60. Salim ET et al (2023) The unclad single-mode fiber-optic sensor simulation for localized surface plasmon resonance sensing based on silver nanoparticles embedded coating. Plasmonics. https://doi.org/10.1007/s11468-023-01949-z

    Article  Google Scholar 

  61. Ibrahimi KM, Kumar R, Pakhira W (2023) Enhance the design and performance analysis of a highly sensitive twin-core PCF SPR biosensor with gold plating for the early detection of cancer cells. Plasmonics 18(3):995–1006. https://doi.org/10.1007/s11468-023-01825-w

    Article  CAS  Google Scholar 

  62. COMSOL: multiphysics software for optimizing designs. COMSOL. Accessed: Oct. 02, 2023. [Online]. Available: https://www.comsol.com/

  63. Chaudhary VS, Kumar D, Mishra GP, Sharma S, Kumar S (2022) Plasmonic biosensor with gold and titanium dioxide immobilized on photonic crystal fiber for blood composition detection. IEEE Sens J 22(9):8474–8481. https://doi.org/10.1109/JSEN.2022.3160482

    Article  CAS  Google Scholar 

  64. Pal A et al (2024) Detecting binary mixtures of sulfolane with ethylene glycol, diethylene glycol, and polyethylene glycol in water using surface plasmon resonance sensor: a numerical investigation. Plasmonics 19(2):1019–1029. https://doi.org/10.1007/s11468-023-02054-x

    Article  CAS  Google Scholar 

  65. Soysal SD et al (2013) EpCAM expression varies significantly and is differentially associated with prognosis in the luminal B HER2+, basal-like, and HER2 intrinsic subtypes of breast cancer. Br J Cancer 108(7):1480–1487. https://doi.org/10.1038/bjc.2013.80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xu T et al (2021) “Imaging-guided therapy simultaneously targeting HER2 and EpCAM with trastuzumab and EpCAM-directed toxin provides additive effect in ovarian cancer model. Cancers 13(16):16. https://doi.org/10.3390/cancers13163939

    Article  CAS  Google Scholar 

  67. Jeddi I, Saiz L (2017) Three-dimensional modeling of single stranded DNA hairpins for aptamer-based biosensors. Sci Rep 7(1):1178. https://doi.org/10.1038/s41598-017-01348-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Razlansari M et al (2023) Development and classification of RNA aptamers for therapeutic purposes: an updated review with emphasis on cancer. Mol Cell Biochem 478(7):1573–1598. https://doi.org/10.1007/s11010-022-04614-x

    Article  CAS  PubMed  Google Scholar 

  69. He L, Shang Z, Liu H, Yuan Z (2020) Alginate-based platforms for cancer-targeted drug delivery. Biomed Res Int 2020(1):1487259. https://doi.org/10.1155/2020/1487259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nawaz A et al (2022) Formulation and evaluation of chitosan-gelatin thermosensitive hydrogels containing 5FU-alginate nanoparticles for skin delivery. Gels 8(9):9. https://doi.org/10.3390/gels8090537

    Article  CAS  Google Scholar 

  71. Villanueva A et al (2009) The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells. Nanotechnology 20(11):115103. https://doi.org/10.1088/0957-4484/20/11/115103

    Article  CAS  PubMed  Google Scholar 

  72. Das P, Fatehbasharzad P, Colombo M, Fiandra L, Prosperi D (2019) Multifunctional magnetic gold nanomaterials for cancer. Trends Biotechnol 37(9):995–1010. https://doi.org/10.1016/j.tibtech.2019.02.005

    Article  CAS  PubMed  Google Scholar 

  73. Akgönüllü S, Bakhshpour M, Pişkin AK, Denizli A (2021) Microfluidic systems for cancer diagnosis and applications. Micromachines 12(11):11. https://doi.org/10.3390/mi12111349

    Article  Google Scholar 

  74. Sagdic K, Inci F (2022) Smart material-integrated systems for isolation and profiling of rare cancer cells and emboli. Adv Eng Mater 24(3):2100857. https://doi.org/10.1002/adem.202100857

    Article  CAS  Google Scholar 

  75. Sanko V, Kuralay F (2023) Label-free electrochemical biosensor platforms for cancer diagnosis: Recent achievements and challenges. Biosensors 13(3):3. https://doi.org/10.3390/bios13030333

    Article  CAS  Google Scholar 

  76. Chen D, Luo X, Xi F (2023) Probe-integrated electrochemical immunosensor based on electrostatic nanocage array for reagentless and sensitive detection of tumor biomarker. Front Chem. https://doi.org/10.3389/fchem.2023.1121450

    Article  PubMed  PubMed Central  Google Scholar 

  77. Tayri-Wilk T et al (2020) Mass spectrometry reveals the chemistry of formaldehyde cross-linking in structured proteins. Nat Commun 11(1):3128. https://doi.org/10.1038/s41467-020-16935-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Anastassacos FM, Zhao Z, Zeng Y, Shih WM (2020) Glutaraldehyde cross-linking of oligolysines coating DNA origami greatly reduces susceptibility to nuclease degradation. J Am Chem Soc 142(7):3311–3315. https://doi.org/10.1021/jacs.9b11698

    Article  CAS  PubMed  Google Scholar 

  79. Islam A, Haider F, Ahmmed Aoni R, Ahmed R (2022) Plasmonic photonic biosensor: in situ detection and quantification of SARS-CoV-2 particles. Opt Express 30(22):40277. https://doi.org/10.1364/OE.469937

    Article  CAS  PubMed  Google Scholar 

  80. Gao S et al (2023) Design of surface plasmon resonance-based D-type double open-loop channels PCF for temperature sensing. Sensors 23(17):17. https://doi.org/10.3390/s23177569

    Article  CAS  Google Scholar 

  81. Zhao Q, Liu J, Yang H, Liu H, Zeng G, Huang B (2022) High birefringence D-shaped germanium-doped photonic crystal fiber sensor. Micromachines 13(6):6. https://doi.org/10.3390/mi13060826

    Article  Google Scholar 

  82. Islam MR et al (2021) Design and numerical analysis of a gold-coated photonic crystal fiber based refractive index sensor. Opt Quant Electron 53(2):112. https://doi.org/10.1007/s11082-021-02748-8

    Article  CAS  Google Scholar 

  83. Islam A, Haider F, Aoni RA, Hossen M, Begum F, Ahmed R (2021) U-grooved dual-channel plasmonic sensor for simultaneous multi-analyte detection. J Opt Soc Am B JOSAB 38(10):3055–3063. https://doi.org/10.1364/JOSAB.435255

    Article  Google Scholar 

  84. Rahman MM, Molla MA, Paul AK, Based MA, Rana MM, Anower MS (2020) Numerical investigation of a highly sensitive plasmonic refractive index sensor utilizing hexagonal lattice of photonic crystal fiber. Results in Physics 18:103313. https://doi.org/10.1016/j.rinp.2020.103313

    Article  Google Scholar 

  85. Rahman MM, Rana MM, Anower MS, Rahman MS, Paul AK (2020) Design and analysis of photonic crystal fiber-based plasmonic microbiosensor: an external sensing scheme. SN Appl Sci 2(7):1194. https://doi.org/10.1007/s42452-020-2998-3

    Article  CAS  Google Scholar 

  86. Haque E, Noman AA, Hossain MA, Hoang Hai N, Namihira Y, Ahmed F (2021) Highly sensitive D-shaped plasmonic refractive index sensor for a broad range of refractive index detection. IEEE Photonics J 13(1):1–11. https://doi.org/10.1109/JPHOT.2021.3055234

    Article  Google Scholar 

  87. Han H et al (2020) A large detection-range plasmonic sensor based on an H-shaped photonic crystal fiber. Sensors 20(4):4. https://doi.org/10.3390/s20041009

    Article  CAS  Google Scholar 

  88. Osifeso S, Chu S, Nakkeeran K (2021) Statistical modelling of photonic crystal fibre based surface plasmon resonance sensors resonant peak wavelength for tolerance studies. Sensors 21(19):19. https://doi.org/10.3390/s21196603

    Article  CAS  Google Scholar 

  89. Abdelghaffar M et al (2023) Highly sensitive V-shaped SPR PCF biosensor for cancer detection. Opt Quant Electron 55(5):472. https://doi.org/10.1007/s11082-023-04740-w

    Article  CAS  Google Scholar 

  90. Ibrahimi KM, Kumar R, Pakhira W (2023) A graphene/Au/TiO2 coated dual-core PCF SPR biosensor with improved design and performance for early cancer cell detection of with high sensitivity. Optik 288:171186. https://doi.org/10.1016/j.ijleo.2023.171186

    Article  CAS  Google Scholar 

  91. Mittal S et al (2023) Spiral shaped photonic crystal fiber-based surface plasmon resonance biosensor for cancer cell detection. Photonics 10(3):3. https://doi.org/10.3390/photonics10030230

    Article  CAS  Google Scholar 

  92. Islam MS et al (2019) A Hi-Bi ultra-sensitive surface plasmon resonance fiber sensor. IEEE Access 7:79085–79094. https://doi.org/10.1109/ACCESS.2019.2922663

    Article  Google Scholar 

  93. Divya J, Selvendran S, Itapu S, Borra V (2024) A novel dual-channel SPR-based PCF biosensor for simultaneous tuberculosis and urinary tract infection diagnosis towards SDG3. IEEE Access. https://doi.org/10.1109/ACCESS.2024.3410698

  94. Falah AAS, Wong WR, Mahamd Adikan FR (2022) Single-mode eccentric-core D-shaped photonic crystal fiber surface plasmon resonance sensor. Opt Laser Technol 145:107474. https://doi.org/10.1016/j.optlastec.2021.107474

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The author contributions in the manuscript are as follows: Amit Kumar Shakya (AKS): conceptualization, methodology, software, writing—original draft, investigation, and validation. Ayushman Ramola (AR): conceptualization, methodology, software, writing—original draft, investigation, and validation. Surinder Singh (SS): supervision and validation. Anurag Vidyarthi (AV): supervision and validation.

Corresponding author

Correspondence to Amit Kumar Shakya.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakya, A.K., Ramola, A., Singh, S. et al. Optimized Design of Plasmonic Biosensor for Cancer Detection: Core Configuration and Nobel Material Coating Innovation. Plasmonics 20, 1789–1810 (2025). https://doi.org/10.1007/s11468-024-02400-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-024-02400-7

Keywords

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载