+
Skip to main content
Log in

AE-MCDM: an autoencoder-based multi-criteria decision-making approach for unsupervised feature selection

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Feature selection is a fundamental technique for reducing the dimensionality of high-dimensional data by identifying the most relevant features while discarding redundant or irrelevant ones. In unsupervised settings, where labeled data are unavailable and labeling is costly, effective feature selection becomes even more challenging. This paper proposes AE-MCDM, a novel unsupervised feature selection method that integrates autoencoder-based feature extraction with multi-criteria decision-making (MCDM). The autoencoder captures high-level feature representations, and the connection weights between input features and hidden neurons reflect feature importance. These weights are then processed using MCDM to rank and select the most informative features. Unlike conventional unsupervised feature selection methods, AE-MCDM leverages deep representation learning to enhance feature evaluation. To the best of our knowledge, this is the first attempt to combine autoencoders with MCDM for feature selection. Extensive experiments on various datasets demonstrate that AE-MCDM outperforms existing methods in terms of clustering performance, measured by metrics such as accuracy, precision, recall, and normalized mutual information (NMI), while also achieving competitive computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

Data generated during the study are subject to a data sharing mandate and available in a few public repositories. All used data are cited in text.

Notes

  1. https://jundongl.github.io/scikit-feature/datasets.html.

References

  1. Hashemi A, Pajoohan M-R, Dowlatshahi MB (2024) NSOFS: a non-dominated sorting-based online feature selection algorithm. Neural Comput Appl 36:1181–1197. https://doi.org/10.1007/s00521-023-09089-5

    Article  Google Scholar 

  2. Karimi F, Dowlatshahi MB, Hashemi A (2023) SemiACO: a semi-supervised feature selection based on ant colony optimization. Expert Syst Appl 214:119130. https://doi.org/10.1016/j.eswa.2022.119130

    Article  Google Scholar 

  3. Hashemi A, Pajoohan M-R, Dowlatshahi MB (2022) Online streaming feature selection based on Sugeno fuzzy integral. In: 2022 9th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS). pp 1–6

  4. Theng D, Bhoyar KK (2024) Feature selection techniques for machine learning: a survey of more than two decades of research. Knowl Inf Syst 66:1575–1637. https://doi.org/10.1007/s10115-023-02010-5

    Article  Google Scholar 

  5. Dhal P, Azad C (2022) A comprehensive survey on feature selection in the various fields of machine learning. Appl Intell 52:4543–4581. https://doi.org/10.1007/s10489-021-02550-9

    Article  Google Scholar 

  6. Dowlatshahi MB, Hashemi A (2023) Unsupervised feature selection: a fuzzy multi-criteria decision-making approach. Iran J Fuzzy Syst 20:55–70. https://doi.org/10.22111/IJFS.2023.7630

    Article  Google Scholar 

  7. Jia W, Sun M, Lian J, Hou S (2022) Feature dimensionality reduction: a review. Complex Intell Syst 8:2663–2693. https://doi.org/10.1007/s40747-021-00637-x

    Article  Google Scholar 

  8. Hashemi A, Joodaki M, Joodaki NZ, Dowlatshahi MB (2022) Ant colony optimization equipped with an ensemble of heuristics through multi-criteria decision making: a case study in ensemble feature selection. Appl Soft Comput 124:109046. https://doi.org/10.1016/j.asoc.2022.109046

    Article  Google Scholar 

  9. Hashemi A, Dowlatshahi MB, Nezamabadi-pour H (2020) MFS-MCDM: Multi-label feature selection using multi-criteria decision making. Knowl-Based Syst 206:106365. https://doi.org/10.1016/j.knosys.2020.106365

    Article  Google Scholar 

  10. Qian W, Huang J, Xu F et al (2023) A survey on multi-label feature selection from perspectives of label fusion. Inform Fusion 100:101948. https://doi.org/10.1016/j.inffus.2023.101948

    Article  Google Scholar 

  11. Hancer E, Xue B, Zhang M (2020) A survey on feature selection approaches for clustering. Artif Intell Rev 53:4519–4545. https://doi.org/10.1007/s10462-019-09800-w

    Article  Google Scholar 

  12. Mahesh B (2020) Machine learning algorithms-a review. International Journal of Science and Research (IJSR)[Internet] 9:381–386

  13. Sidhom O, Ghazouani H, Barhoumi W (2024) Three-phases hybrid feature selection for facial expression recognition. J Supercomput 80:8094–8128. https://doi.org/10.1007/s11227-023-05758-3

    Article  Google Scholar 

  14. Ayad AG, Sakr NA, Hikal NA (2024) A hybrid approach for efficient feature selection in anomaly intrusion detection for IoT networks. J Supercomput 80:26942–26984. https://doi.org/10.1007/s11227-024-06409-x

    Article  Google Scholar 

  15. Hashemi A, Dowlatshahi MB (2023) A Fuzzy Integral Approach for Ensembling Unsupervised Feature Selection Algorithms. In: 2023 28th International Computer Conference, Computer Society of Iran (CSICC). pp 1–6

  16. Got A, Moussaoui A, Zouache D (2021) Hybrid filter-wrapper feature selection using whale optimization algorithm: a multi-objective approach. Expert Syst Appl 183:115312. https://doi.org/10.1016/j.eswa.2021.115312

    Article  Google Scholar 

  17. Zaman EAK, Mohamed A, Ahmad A (2022) Feature selection for online streaming high-dimensional data: a state-of-the-art review. Appl Soft Comput 127:109355. https://doi.org/10.1016/j.asoc.2022.109355

    Article  Google Scholar 

  18. Solorio-Fernández S, Carrasco-Ochoa JA, Martínez-Trinidad JFco (2020) A review of unsupervised feature selection methods. Artif Intell Rev 53:907–948. https://doi.org/10.1007/s10462-019-09682-y

    Article  Google Scholar 

  19. Liao H, Chen H, Yin T et al (2025) A general adaptive unsupervised feature selection with auto-weighting. Neural Netw 181:106840. https://doi.org/10.1016/j.neunet.2024.106840

    Article  Google Scholar 

  20. Han K, Wang Y, Zhang C, et al (2018) Autoencoder Inspired Unsupervised Feature Selection. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). pp 2941–2945

  21. Hafezalkotob A, Hafezalkotob A, Liao H, Herrera F (2019) An overview of MULTIMOORA for multi-criteria decision-making: theory, developments, applications, and challenges. Inform Fusion 51:145–177. https://doi.org/10.1016/j.inffus.2018.12.002

    Article  Google Scholar 

  22. Hashemi A, Dowlatshahi MB, Nezamabadi-pour H (2021) VMFS: a VIKOR-based multi-target feature selection. Expert Syst Appl 182:115224. https://doi.org/10.1016/j.eswa.2021.115224

    Article  Google Scholar 

  23. Hashemi A, Dowlatshahi MB, Nezamabadi-pour H (2022) Ensemble of feature selection algorithms: a multi-criteria decision-making approach. Int J Mach Learn & Cyber 13:49–69. https://doi.org/10.1007/s13042-021-01347-z

    Article  Google Scholar 

  24. Lin X, Guan J, Chen B, Zeng Y (2022) Unsupervised feature selection via orthogonal basis clustering and local structure preserving. IEEE Trans Neural Networks and Learn Syst 33:6881–6892. https://doi.org/10.1109/TNNLS.2021.3083763

    Article  MathSciNet  Google Scholar 

  25. Guo J, Zhu W (2018) Dependence Guided Unsupervised Feature Selection. In: Proceedings of the AAAI Conference on Artificial Intelligence 32, https://doi.org/10.1609/aaai.v32i1.11904

  26. Zhu P, Zhu W, Wang W et al (2017) Non-convex regularized self-representation for unsupervised feature selection. Image Vis Comput 60:22–29. https://doi.org/10.1016/j.imavis.2016.11.014

    Article  Google Scholar 

  27. Huang D, Cai X, Wang C-D (2019) Unsupervised feature selection with multi-subspace randomization and collaboration. Knowl-Based Syst 182:104856. https://doi.org/10.1016/j.knosys.2019.07.027

    Article  Google Scholar 

  28. Xie J, Wang M, Xu S et al (2021) The unsupervised feature selection algorithms based on standard deviation and cosine similarity for genomic data analysis. Front Genet. https://doi.org/10.3389/fgene.2021.684100

    Article  Google Scholar 

  29. Beiranvand F, Mehrdad V, Dowlatshahi MB (2022) Unsupervised feature selection for image classification: a bipartite matching-based principal component analysis approach. Knowl-Based Syst 250:109085. https://doi.org/10.1016/j.knosys.2022.109085

    Article  Google Scholar 

  30. Feng S, Duarte MF (2018) Graph autoencoder-based unsupervised feature selection with broad and local data structure preservation. Neurocomputing 312:310–323. https://doi.org/10.1016/j.neucom.2018.05.117

    Article  Google Scholar 

  31. Xu X, Gu H, Wang Y et al (2019) Autoencoder Based Feature Selection Method for Classification of Anticancer Drug Response. Front Genet. https://doi.org/10.3389/fgene.2019.00233

    Article  Google Scholar 

  32. Uzma MU, Halim Z (2023) Protein encoder: an autoencoder-based ensemble feature selection scheme to predict protein secondary structure. Expert Syst Appl 213:119081. https://doi.org/10.1016/j.eswa.2022.119081

    Article  Google Scholar 

  33. Yousefi-Azar M, Varadharajan V, Hamey L, Tupakula U (2017) Autoencoder-based feature learning for cyber security applications. In: 2017 International Joint Conference on Neural Networks (IJCNN). pp 3854–3861

  34. Gong X, Yu L, Wang J et al (2022) Unsupervised feature selection via adaptive autoencoder with redundancy control. Neural Netw 150:87–101. https://doi.org/10.1016/j.neunet.2022.03.004

    Article  MATH  Google Scholar 

  35. Zhang Y, Yang A, Xiong C et al (2014) Feature selection using data envelopment analysis. Knowl-Based Syst 64:70–80. https://doi.org/10.1016/j.knosys.2014.03.022

    Article  Google Scholar 

  36. Lee C-Y, Cai J-Y (2020) LASSO variable selection in data envelopment analysis with small datasets. Omega 91:102019. https://doi.org/10.1016/j.omega.2018.12.008

    Article  Google Scholar 

  37. Meng Q, Catchpoole D, Skillicom D, Kennedy PJ (2017) Relational autoencoder for feature extraction. In: 2017 International Joint Conference on Neural Networks (IJCNN). pp 364–371

  38. Olshausen BA, Field DJ (1997) Sparse coding with an overcomplete basis set: a strategy employed by V1? Vision Res 37:3311–3325. https://doi.org/10.1016/S0042-6989(97)00169-7

    Article  Google Scholar 

  39. Meng L, Ding S, Xue Y (2017) Research on denoising sparse autoencoder. Int J Mach Learn Cybern 8:1719–1729. https://doi.org/10.1007/s13042-016-0550-y

    Article  Google Scholar 

  40. Taherdoost H, Madanchian M (2023) Multi-criteria decision making (MCDM) methods and concepts. Encyclopedia 3:77–87. https://doi.org/10.3390/encyclopedia3010006

    Article  Google Scholar 

  41. Khan J, Wei JS, Ringnér M et al (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7:673–679. https://doi.org/10.1038/89044

    Article  Google Scholar 

  42. Chiaretti S, Li X, Gentleman R et al (2004) Gene expression profile of adult T-cell acute lymphocytic leukemia identifies distinct subsets of patients with different response to therapy and survival. Blood 103:2771–2778. https://doi.org/10.1182/blood-2003-09-3243

    Article  Google Scholar 

  43. Christensen BC, Houseman EA, Marsit CJ et al (2009) Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet 5:e1000602. https://doi.org/10.1371/journal.pgen.1000602

    Article  Google Scholar 

  44. Johnsen H, Pesich R, Geisler S et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100:8418–8423. https://doi.org/10.1073/pnas.0932692100

    Article  Google Scholar 

  45. Alon U, Barkai N, Notterman DA et al (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci 96:6745–6750. https://doi.org/10.1073/pnas.96.12.6745

    Article  Google Scholar 

  46. Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann Math Stat 11:86–92. https://doi.org/10.1214/aoms/1177731944

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This research did not receive any specific grant from public, commercial, or not-for-profit funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

Amin Hashemi, Mohammad Bagher Dowlatshahi, Parham Moradi, and Siamak Farshidi proposed the research idea, then Amin Hashemi implemented the experiments, and finally, Amin Hashemi and Mohammad Bagher Dowlatshahi wrote the manuscript. All authors discussed the results and contributed to the final manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Mohammad Bagher Dowlatshahi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, A., Dowlatshahi, M.B., Farshidi, S. et al. AE-MCDM: an autoencoder-based multi-criteria decision-making approach for unsupervised feature selection. J Supercomput 81, 804 (2025). https://doi.org/10.1007/s11227-025-07316-5

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s11227-025-07316-5

Keywords

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载