+
Skip to main content
Log in

An improved educational competition optimizer with multi-covariance learning operators for global optimization problems

  • Published:
Cluster Computing Aims and scope Submit manuscript

This article has been updated

Abstract

The educational competition optimizer is a recently introduced metaheuristic algorithm inspired by human behavior, originating from the dynamics of educational competition within society. Nonetheless, ECO faces constraints due to an imbalance between exploitation and exploration, rendering it susceptible to local optima and demonstrating restricted effectiveness in addressing complex optimization problems. To address these limitations, this study presents an enhanced educational competition optimizer (IECO-MCO) utilizing multi-covariance learning operators. In IECO, three distinct covariance learning operators are introduced to improve the performance of ECO. Each operator effectively balances exploitation and exploration while preventing premature convergence of the population. The effectiveness of IECO is assessed through benchmark functions derived from the CEC 2017 and CEC 2022 test suites, and its performance is compared with various basic and improved algorithms across different categories. The results demonstrate that IECO-MCO surpasses the basic ECO and other competing algorithms in convergence speed, stability, and the capability to avoid local optima. Furthermore, statistical analyses, including the Friedman test, Kruskal-Wallis test, and Wilcoxon rank-sum test, are conducted to validate the superiority of IECO-MCO over the compared algorithms. Compared with the basic algorithm (improved algorithm), IECO-MCO achieved an average ranking of 2.213 (2.488) on the CE2017 and CEC2022 test suites. Additionally, the practical applicability of the proposed IECO-MCO algorithm is verified by solving constrained optimization problems. The experimental outcomes demonstrate the superior performance of IECO-MCO in tackling intricate optimization problems, underscoring its robustness and practical effectiveness in real-world scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1:
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data is provided within the manuscript or supplementary information files.

Change history

  • 24 October 2025

    The original online version of this article was revised: The second and third affiliations have been swapped and they are corrected now.

References

  1. Slowik, A., Kwasnicka, H.: Nature inspired methods and their industry Applications-Swarm intelligence algorithms. IEEE Trans. Ind. Inf. 14, 1004–1015 (2018). https://doi.org/10.1109/TII.2017.2786782

    Article  Google Scholar 

  2. Liu, R.N., Yang, B.Y., Zio, E., Chen, X.F.: Artificial intelligence for fault diagnosis of rotating machinery: A review. Mech. Syst. Signal. Process. 108, 33–47 (2018). https://doi.org/10.1016/j.ymssp.2018.02.016

    Article  Google Scholar 

  3. Yuan, Q.Q., Shen, H.F., Li, T.W., Li, Z.W., Li, S.W., Jiang, Y., Xu, H.Z., Tan, W.W., Yang, Q.Q., Wang, J.W., Gao, J.H., Zhang, L.P.: Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 241 (2020). https://doi.org/10.1016/j.rse.2020.111716

  4. Hu, G., Zhong, J., Du, B., Wei, G.: An enhanced hybrid arithmetic optimization algorithm for engineering applications. Computer Methods in Applied Mechanics and Engineering (2022). https://doi.org/10.1016/j.cma.2022.114901

    Article  MathSciNet  Google Scholar 

  5. Tang, A., Zhou, H., Han, T., Xie, L.: A modified Manta ray foraging optimization for global optimization problems. IEEE Access. (2021). https://doi.org/10.1109/ACCESS.2021.3113323

    Article  Google Scholar 

  6. Tang, A., Zhou, H., Han, T., Xie, L.: A chaos sparrow search algorithm with logarithmic spiral and adaptive step for engineering problems. Computer Modeling in Engineering & Sciences (2022). https://doi.org/10.32604/cmes.2022.017310

    Article  Google Scholar 

  7. Xing, J., Heidari, A.A., Chen, H., Zhao, H.: WHRIME: A weight-based recursive hierarchical RIME optimizer for breast cancer histopathology image segmentation. Displays. (2024). https://doi.org/10.1016/j.displa.2024.102648

    Article  Google Scholar 

  8. Shi, J.E., Chen, Y., Cai, Z.N., Heidari, A.A., Chen, H.L., He, Q.X.: Multi-threshold image segmentation using a boosted Whale optimization: Case study of breast invasive ductal carcinomas. Cluster Computing 27, 14891–14949 (2024). https://doi.org/10.1007/s10586-024-04644-8

    Article  Google Scholar 

  9. Li, H., Zhu, X., Li, M., Yang, Z., Wen, M.: Multi-threshold image segmentation research based on improved enhanced arithmetic optimization algorithm. Signal, Image and Video Processing (2024). https://doi.org/10.1007/s11760-024-03026-2

    Article  Google Scholar 

  10. Tang, A., Di, Han, T., Zhou, H., Xie, L.: An improved equilibrium optimizer with application in unmanned aerial vehicle path planning. Sensors. (2021). https://doi.org/10.3390/s21051814

    Article  Google Scholar 

  11. Hu, G., Huang, F.Y., Shu, B., Wei, G.: MAHACO: Multi-algorithm hybrid ant colony optimizer for 3D path planning of a group of UAVs. Information Sciences (2025). https://doi.org/10.1016/j.ins.2024.121714

    Article  Google Scholar 

  12. Hu, G., Cheng, M., Houssein, E.H., Jia, H.M.: CMPSO: A novel co-evolutionary multigroup particle swarm optimization for multi-mission UAVs path planning. Advanced Engineering Informatics (2025). https://doi.org/10.1016/j.aei.2024.102923

    Article  Google Scholar 

  13. Amiri, A., Torkzadeh, P., Salajegheh, E.: A new improved Newton metaheuristic algorithm for solving mathematical and structural optimization problems. Evolutionary Intelligence (2024). https://doi.org/10.1007/s12065-024-00911-0

    Article  Google Scholar 

  14. Wu, Y., Kang, F., Zhang, Y., Li, X., Li, H.: Structural identification of concrete dams with ambient vibration based on surrogate-assisted multi-objective salp swarm algorithm. Structures. (2024). https://doi.org/10.1016/j.istruc.2024.105956

    Article  Google Scholar 

  15. Zhang, D., Huang, X., Wang, T., Habibi, M., Albaijan, I., Toghroli, E.: Dynamic stability improvement in spinning FG-piezo cylindrical structure using PSO-ANN and firefly optimization algorithm. Materials Science and Engineering: B (2024). https://doi.org/10.1016/j.mseb.2024.117210

    Article  Google Scholar 

  16. Chicco, G., Mazza, A.: Metaheuristic optimization of power and energy systems: Underlying principles and main issues of the rush to heuristics. ENERGIES (2020). https://doi.org/10.3390/en13195097

    Article  Google Scholar 

  17. Wu, D., Wu, L., Wen, T., Li, L.: Microgrid Operation Optimization Method Considering Power-to-Gas Equipment. An Improved Gazelle Optimization Algorithm. Symmetry (2024). https://doi.org/10.3390/sym16010083

    Article  Google Scholar 

  18. Li, P.T., Wang, H.B., Wang, R.L., Zhao, C.Z., Song, Y.D.: Optimization control of central air conditioning based on the improved butterfly optimization algorithm. Eng. Res. EXPRESS (2025). https://doi.org/10.1088/2631-8695/add3c2

    Article  Google Scholar 

  19. Alirezapour, H., Mansouri, N., Hasani Zade, M.: A comprehensive survey on feature selection with grasshopper optimization algorithm. Neural Process. Lett. (2024). https://doi.org/10.1007/s11063-024-11514-2

    Article  Google Scholar 

  20. Hamdipour, A., Basiri, A., Zaare, M., Mirjalili, S.: Artificial rabbits optimization algorithm with automatically DBSCAN clustering algorithm to similarity agent update for features selection problems. J. Supercomput. (2025). https://doi.org/10.1007/s11227-024-06606-8

    Article  Google Scholar 

  21. Jia, H.M., Zhou, X.L., Zhang, J.R., Mirjalili, S.: Superb Fairy-wren optimization algorithm: A novel metaheuristic algorithm for solving feature selection problems. Cluster Computing (2025). https://doi.org/10.1007/s10586-024-04901-w

    Article  Google Scholar 

  22. Zheng, X.Y., Zhang, C.S., Zhang, B.: A mayfly algorithm for cardinality constrained portfolio optimization. Expert Systems with Applications (2023). https://doi.org/10.1016/j.eswa.2023.120656

    Article  Google Scholar 

  23. Khodier, R., Radi, A., Ayman, B., Gheith, M.: An adapted black widow optimization algorithm for financial portfolio optimization problem with cardinalty and budget constraints. Sci. Rep (2024). https://doi.org/10.1038/s41598-024-71193-w

    Article  Google Scholar 

  24. Xie, L., Han, T., Zhou, H., Zhang, Z.-R., Han, B., Tang, A.: Tuna swarm optimization: A novel swarm-Based metaheuristic algorithm for global optimization. Comput. Intell. Neurosci. (2021). https://doi.org/10.1155/2021/9210050

    Article  Google Scholar 

  25. Xue, J., Shen, B.: A novel swarm intelligence optimization approach: Sparrow search algorithm. Systems Science & Control Engineering (2020). https://doi.org/10.1080/21642583.2019.1708830

    Article  Google Scholar 

  26. Holland, J.H.: Genetic algorithms. Sci. Am. (1992). https://doi.org/10.1038/scientificamerican0792-66

    Article  Google Scholar 

  27. Opara, K.R., Arabas, J.: Differential evolution: A survey of theoretical analyses. Swarm and Evolutionary Computation (2019). https://doi.org/10.1016/j.swevo.2018.06.010

    Article  Google Scholar 

  28. Beyer, H.-G., Schwefel, H.-P.: Evolution strategies– A comprehensive introduction. Natural Computing (2002). https://doi.org/10.1023/A:1015059928466

  29. Gao, H., Zhang, Q.K.: Alpha evolution: An efficient evolutionary algorithm with evolution path adaptation and matrix generation. Engineering Applications of Artificial Intelligence (2024). https://doi.org/10.1016/j.engappai.2024.109202

    Article  Google Scholar 

  30. Sulaiman, M.H., Mustaffa, Z., Saari, M.M., Daniyal, H., Mirjalili, S.: Evolutionary mating algorithm. Neural Computing and Applications 35, 487–516 (2023). https://doi.org/10.1007/s00521-022-07761-w

    Article  Google Scholar 

  31. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

  32. Dorigo, M., Di Caro, G.: Ant colony optimization: A new meta-heuristic. In: Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999 (1999)

  33. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey Wolf optimizer. Advances in Engineering Software (2014). https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  34. Agushaka, J.O., Ezugwu, A.E., Abualigah, L.: Dwarf mongoose optimization algorithm. Computer Methods in Applied Mechanics and Engineering (2022). https://doi.org/10.1016/j.cma.2022.114570

    Article  MathSciNet  Google Scholar 

  35. Amiri, M.H., Mehrabi Hashjin, N., Montazeri, M., Mirjalili, S., Khodadadi, N.: Hippopotamus optimization algorithm: A novel nature-inspired optimization algorithm. Sci. Rep. (2024). https://doi.org/10.1038/s41598-024-54910-3

    Article  Google Scholar 

  36. Jia, H., Rao, H., Wen, C., Mirjalili, S.: Crayfish optimization algorithm. Artif. Intell. Rev. (S2), (2023). https://doi.org/10.1007/s10462-023-10567-4

  37. Hu, G., Guo, Y., Wei, G., Abualigah, L.: Genghis Khan shark optimizer: A novel nature-inspired algorithm for engineering optimization. Advanced Engineering Informatics (2023). https://doi.org/10.1016/j.aei.2023.102210

    Article  Google Scholar 

  38. Ezugwu, A.E., Agushaka, J.O., Abualigah, L., Mirjalili, S., Gandomi, A.H.: Prairie dog optimization algorithm. Neural Computing and Applications 34, 20017–20065 (2022). https://doi.org/10.1007/s00521-022-07530-9

    Article  Google Scholar 

  39. Xiao, Y.N., Cui, H., Abu Khurma, R., Castillo, P.A.: Artificial lemming algorithm: A novel bionic meta-heuristic technique for solving real-world engineering optimization problems. Artif. Intell. Rev. 58 (2025). https://doi.org/10.1007/s10462-024-11023-7

  40. Abdollahzadeh, B., Khodadadi, N., Barshandeh, S., Trojovsky, P., Gharehchopogh, F.S., El-kenawy, E.M., Abualigah, L., Mirjalili, S.: Puma optimizer (PO): A novel metaheuristic optimization algorithm and its application in machine learning. Clust Comput. J. NETWORKS Softw. TOOLS Appl. 27, 5235–5283 (2024). https://doi.org/10.1007/s10586-023-04221-5

    Article  Google Scholar 

  41. Agushaka, J.O., Ezugwu, A.E., Abualigah, L.: Gazelle optimization algorithm: A novel nature-inspired metaheuristic optimizer. Neural Computing and Applications (2023). https://doi.org/10.1007/s00521-022-07854-6

    Article  Google Scholar 

  42. Mirjalili, S.: SCA: A sine cosine algorithm for solving optimization problems. Knowledge-Based Syst. (2016). https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  43. Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., Gandomi, A.H.: The arithmetic optimization algorithm. Computer Methods in Applied Mechanics and Engineering (2021). https://doi.org/10.1016/j.cma.2020.113609

    Article  MathSciNet  Google Scholar 

  44. Zhao, W.G., Wang, L.Y., Zhang, Z.X., Mirjalili, S., Khodadadi, N., Ge, Q.: Quadratic interpolation optimization (QIO): A new optimization algorithm based on generalized quadratic interpolation and its applications to real-world engineering problems. Computer Methods in Applied Mechanics and Engineering (2023). https://doi.org/10.1016/j.cma.2023.116446

    Article  MathSciNet  Google Scholar 

  45. Layeb, A.: Tangent search algorithm for solving optimization problems. Neural Computing and Applications 34, 8853–8884 (2022). https://doi.org/10.1007/s00521-022-06908-z

    Article  Google Scholar 

  46. Bai, J., Li, Y., Zheng, M., Khatir, S., Benaissa, B., Abualigah, L., Wahab, A.: A Sinh Cosh optimizer. Knowledge-Based Syst. (2023). https://doi.org/10.1016/j.knosys.2023.111081

    Article  Google Scholar 

  47. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science (1983). https://doi.org/10.1126/science.220.4598.671

    Article  MathSciNet  Google Scholar 

  48. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: A gravitational search algorithm. Information Sciences (2009). https://doi.org/10.1016/j.ins.2009.03.004

    Article  Google Scholar 

  49. Deng, L., Liu, S.: Snow ablation optimizer: A novel metaheuristic technique for numerical optimization and engineering design. Expert Systems with Applications (2023). https://doi.org/10.1016/j.eswa.2023.120069

    Article  Google Scholar 

  50. Gao, Y.: PID-based search algorithm: A novel metaheuristic algorithm based on PID algorithm. Expert Systems with Applications (2023). https://doi.org/10.1016/j.eswa.2023.120886

    Article  Google Scholar 

  51. Faramarzi, A., Heidarinejad, M., Stephens, B., Mirjalili, S.: Equilibrium optimizer: A novel optimization algorithm. Knowledge-Based Syst. (2020). https://doi.org/10.1016/j.knosys.2019.105190

    Article  Google Scholar 

  52. Mirjalili, S., Mirjalili, S.M., Hatamlou, A.: Multi-Verse optimizer: A nature-inspired algorithm for global optimization. Neural Computing and Applications (2016). https://doi.org/10.1007/s00521-015-1870-7

    Article  Google Scholar 

  53. Yuan, C., Zhao, D., Heidari, A.A., Liu, L., Chen, Y., Chen, H.: Polar lights optimizer: Algorithm and applications in image segmentation and feature selection. Neurocomputing. 607, 128427 (2024). https://doi.org/10.1016/j.neucom.2024.128427

    Article  Google Scholar 

  54. Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems. Computer-Aided Design (2011). https://doi.org/10.1016/j.cad.2010.12.015

    Article  Google Scholar 

  55. Tian, Z., Gai, M.: Football team training algorithm: A novel sport-inspired meta-heuristic optimization algorithm for global optimization. Expert Systems with Applications (2024). https://doi.org/10.1016/j.eswa.2023.123088

    Article  Google Scholar 

  56. Askari, Q., Younas, I., Saeed, M.: Political optimizer: A novel socio-inspired meta-heuristic for global optimization. Knowledge-Based Syst. (2020). https://doi.org/10.1016/j.knosys.2020.105709

    Article  Google Scholar 

  57. Jia, H., Wen, Q., Wang, Y., Mirjalili, S.: Catch fish optimization algorithm: A new human behavior algorithm for solving clustering problems. Cluster Comput. 27, 13295–13332 (2024). https://doi.org/10.1007/s10586-024-04618-w

    Article  Google Scholar 

  58. Moosavi, S.H.S., Bardsiri, V.K.: Poor and rich optimization algorithm: A new human-based and multi populations algorithm. Eng. Appl. Artif. Intell. 86, 165–181 (2019). https://doi.org/10.1016/j.engappai.2019.08.025

    Article  Google Scholar 

  59. Dehghani, M., Trojovsky, P.: Hybrid leader based optimization: A new stochastic optimization algorithm for solving optimization applications. Sci. Rep. (2022). https://doi.org/10.1038/s41598-022-09514-0

    Article  Google Scholar 

  60. Lian, J.B., Zhu, T., Ma, L., Wu, X.C., Heidari, A.A., Chen, Y., Chen, H.L., Hui, G.H.: The educational competition optimizer. International Journal of Systems Science 55, 3185–3222 (2024). https://doi.org/10.1080/00207721.2024.2367079

    Article  Google Scholar 

  61. Tang, W.K., Shi, S.Q., Lu, Z.T., Lin, M.Y., Cheng, H.: EDECO: An enhanced educational competition optimizer for numerical optimization problems. Biomimetics (2025). https://doi.org/10.3390/biomimetics10030176

    Article  Google Scholar 

  62. Ekinci, S., Izci, D., Can, O., Bajaj, M., Blazek, V.: Frequency regulation of PV-reheat thermal power system via a novel hybrid educational competition optimizer with pattern search and cascaded PDN-PI controller. Results in Engineering (2024). https://doi.org/10.1016/j.rineng.2024.102958

    Article  Google Scholar 

  63. Xiao, Y., Cui, H., Hussien, A.G., Hashim, F.A.: MSAO: A multi-strategy boosted snow ablation optimizer for global optimization and real-world engineering applications. Advanced Engineering Informatics (2024). https://doi.org/10.1016/j.aei.2024.102464

    Article  Google Scholar 

  64. He, G., Lu, X., li: Good point set and double attractors based-QPSO and application in portfolio with transaction fee and financing cost. Expert Syst. Appl. (2022). https://doi.org/10.1016/j.eswa.2022.118339

    Article  Google Scholar 

  65. Xiao, Y., Sun, X., Guo, Y., Li, S., Zhang, Y., Wang, Y.: An improved Gorilla troops optimizer based on lens Opposition-Based learning and adaptive β-Hill climbing for global optimization. Computer Modeling in Engineering & Sciences (2022). https://doi.org/10.32604/cmes.2022.019198

    Article  Google Scholar 

  66. Tang, A., Di, Tang, S.Q., Han, T., Zhou, H., Xie, L.: A modified slime mould algorithm for global optimization. Comput. Intell. Neurosci. (2021). https://doi.org/10.1155/2021/2298215

    Article  Google Scholar 

  67. Adegboye, O.R., Feda, A.K., Ishaya, M.M., Agyekum, E.B., Kim, K.C., Mbasso, W.F., Kamel, S.: Antenna S-parameter optimization based on golden sine mechanism based honey Badger algorithm with tent chaos. Heliyon. (2023). https://doi.org/10.1016/j.heliyon.2023.e21596

    Article  Google Scholar 

  68. Zhao, X.H., Yang, C., Zhu, D.L., Liu, Y.J.: A hybrid algorithm based on Multi-Strategy elite learning for global optimization. ELECTRONICS (2024). https://doi.org/10.3390/electronics13142839

    Article  Google Scholar 

  69. Azim Eirgash, M., Toğan, V., Dede, T., Basri Başağa, H.: Modified dynamic opposite learning assisted TLBO for solving Time-Cost optimization in generalized construction projects. Structures. (2023). https://doi.org/10.1016/j.istruc.2023.04.091

    Article  Google Scholar 

  70. Sahoo, S.K., Premkumar, M., Saha, A.K., Houssein, E.H., Wanjari, S., Emam, M.M.: Multi-objective quasi-reflection learning and weight strategy-based moth flame optimization algorithm. Neural Computing and Applications (2024). https://doi.org/10.1007/s00521-023-09234-0

    Article  Google Scholar 

  71. Xiao, Y., Sun, X., Guo, Y., Cui, H., Wang, Y., Li, J., Li, S.: An enhanced honey Badger algorithm based on lévy flight and refraction opposition-based learning for engineering design problems. Journal of Intelligent & Fuzzy Systems (2022). https://doi.org/10.3233/JIFS-213206

    Article  Google Scholar 

  72. Li, J., An, Q., Lei, H., Deng, Q., Wang, G.G.: Survey of lévy Flight-Based metaheuristics for optimization. Mathematics. (2022). https://doi.org/10.3390/math10152785

  73. Adegboye, O.R., Feda, A.K., Ojekemi, O.S., Agyekum, E.B., Elattar, E.E., Kamel, S.: Refinement of dynamic hunting leadership algorithm for enhanced numerical optimization. IEEE ACCESS. 12, 103271–103298 (2024). https://doi.org/10.1109/ACCESS.2024.3427812

    Article  Google Scholar 

  74. Sahoo, S.K., Sharma, S., Saha, A.K.: A novel variant of moth flame optimizer for higher dimensional optimization problems. J. Bionic Eng. (2023). https://doi.org/10.1007/s42235-023-00357-7

    Article  Google Scholar 

  75. Xiao, Y., Guo, Y., Cui, H., Wang, Y., Li, J., Zhang, Y.: IHAOAVOA: An improved hybrid Aquila optimizer and African vultures optimization algorithm for global optimization problems. Mathematical Biosciences and Engineering (2022). https://doi.org/10.3934/mbe.2022512

    Article  Google Scholar 

  76. Cui, H., Guo, Y., Xiao, Y., Wang, Y., Li, J., Zhang, Y., Zhang, H.: Enhanced Harris Hawks optimization integrated with Coot bird optimization for solving continuous numerical optimization problems. Computer Modeling in Engineering & Sciences (2023). https://doi.org/10.32604/cmes.2023.026019

    Article  Google Scholar 

  77. Adegboye, O.R., Deniz Ülker, E.: Hybrid artificial electric field employing cuckoo search algorithm with refraction learning for engineering optimization problems. Sci. Rep. (2023). https://doi.org/10.1038/s41598-023-31081-1

    Article  Google Scholar 

  78. Adegboye, O.R., Feda, A.K., Ojekemi, O.R., Agyekum, E.B., Khan, B., Kamel, S.: DGS-SCSO: Enhancing sand Cat swarm optimization with dynamic pinhole imaging and golden sine algorithm for improved numerical optimization performance. Sci. Rep. (2024). https://doi.org/10.1038/s41598-023-50910-x

    Article  Google Scholar 

  79. Adegboye, O.R., Feda, A.K.: Improved exponential distribution optimizer: Enhancing global numerical optimization problem solving and optimizing machine learning paramseters. Cluster Computing (2025). https://doi.org/10.1007/s10586-024-04753-4

    Article  Google Scholar 

  80. Sahoo, S.K., Saha, A.K.: A hybrid moth flame optimization algorithm for global optimization. J. Bionic Eng. (2022). https://doi.org/10.1007/s42235-022-00207-y

  81. Sahoo, S.K., Saha, A.K., Sharma, S., Mirjalili, S., Chakraborty, S.: An enhanced moth flame optimization with mutualism scheme for function optimization. Soft Comput. (2022). https://doi.org/10.1007/s00500-021-06560-0

    Article  Google Scholar 

  82. Emam, M.M., Abd El-Sattar, H., Houssein, E.H., Kamel, S.: Optimized design and integration of an off-grid solar PV-biomass-battery hybrid energy system using an enhanced educational competition algorithm for cost-effective rural electrification. Journal of Energy Storage (2025). https://doi.org/10.1016/j.est.2025.116381

    Article  Google Scholar 

  83. Adegboye, O.R., Deniz Ülker, E.: Gaussian mutation specular reflection learning with local escaping operator based artificial electric field algorithm and its engineering application. Appl. Sci. (2023). https://doi.org/10.3390/app13074157

    Article  Google Scholar 

  84. Li, Y., Han, T., Zhou, H., Tang, S., Zhao, H.: A novel adaptive L-SHADE algorithm and its application in UAV swarm resource configuration problem. Information Sciences (2022). https://doi.org/10.1016/j.ins.2022.05.058

    Article  Google Scholar 

  85. Zhu, W., Li, Z.H., Su, H., Liu, L., Heidari, A.A., Chen, H.L., Liang, G.X.: Optimizing microseismic monitoring: A fusion of Gaussian-Cauchy and adaptive weight strategies. J. Comput. Des. Eng. 11 (2024). https://doi.org/10.1093/jcde/qwae073

  86. Xue, J., Shen, B.: Dung beetle optimizer: A new meta-heuristic algorithm for global optimization. J. Supercomput. (2023). https://doi.org/10.1007/s11227-022-04959-6

    Article  Google Scholar 

  87. Bakır, H.: Dynamic fitness-distance balance-based artificial rabbits optimization algorithm to solve optimal power flow problem. Expert Systems with Applications (2024). https://doi.org/10.1016/j.eswa.2023.122460

    Article  Google Scholar 

  88. Nadimi-Shahraki, M.H., Taghian, S., Javaheri, D., Sadiq, A.S., Khodadadi, N., Mirjalili, S.: MTV-SCA: multi-trial vector-based sine cosine algorithm. Cluster Computing 27, 13471–13515 (2024). https://doi.org/10.1007/s10586-024-04602-4

    Article  Google Scholar 

  89. Zhang, Y., Chi, A.: Group teaching optimization algorithm with information sharing for numerical optimization and engineering optimization. J. Intell. Manuf. (2023). https://doi.org/10.1007/s10845-021-01872-2

    Article  Google Scholar 

Download references

Funding

This research was funded by Ningbo Natural Science Foundation, grant number 2023J242 and Key Project of Ningbo Polytechnic, grant number NZ23Z01.

Author information

Authors and Affiliations

Authors

Contributions

Baoqi Zhao: conceptualization, methodology, writing, data testing, reviewing, software. Xiong Yang: methodology, conceptualization, supervision, formal analysis. Hoileong Lee: reviewing, formal analysis. Bowen Dong: reviewing, formal analysis.

Corresponding author

Correspondence to Xiong Yang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, B., Yang, X., Lee, H. et al. An improved educational competition optimizer with multi-covariance learning operators for global optimization problems. Cluster Comput 28, 964 (2025). https://doi.org/10.1007/s10586-025-05709-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s10586-025-05709-y

Keywords

Profiles

  1. Hoileong Lee
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载