+
Skip to main content
Log in

Interactions of flavonoid and coumarin derivative compounds with transforming growth factor-beta receptor 1 (TGF-βR1): integrating virtual screening, molecular dynamics, maximum common substructure, and ADMET approaches in the treatment of idiopathic pulmonary fibrosis

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease characterized by very limited treatment options and significant side effects from existing therapies, highlighting the urgent need for more effective drug-like molecules. Transforming growth factor-beta receptor 1 (TGF-βR1) is a key player in the pathogenesis of IPF and represents a critical target for therapeutic intervention. In this study, the potential of plant-derived flavonoid and coumarin compounds as novel TGF-βR1 inhibitors was explored. A total of 1206 flavonoid and coumarin derivatives were investigated through a series of computational approaches, including drug-like filtering, virtual screening, molecular docking, 200-ns molecular dynamics (MD) simulations in triplicate, maximum common substructure (MCS) analysis, and absorption-distribution-metabolism-excretion-toxicity (ADMET) profiling. 2′,3′,4′-trihydroxyflavone and dicoumarol emerged as promising plant-based hit candidates, exhibiting comparable docking scores, MD-based structural stability, and more negative MM/PBSA binding free energy relative to the co-crystallized inhibitor, while surpassing pirfenidone in these parameters and demonstrating superior pharmacological properties. In light of the findings from this study, 2′,3′,4′-trihydroxyflavone and dicoumarol could be considered novel TGF-βR1 inhibitors for IPF treatment, and it is recommended that their structural optimization be pursued through in vitro binding assays and in vivo animal studies.

Methods

The initial dataset of 1206 flavonoid and coumarin derivatives was filtered for drug-likeness using Lipinski’s Rule of Five in the ChemMaster—Pro 1.2 program, resulting in 161 potential candidates. These compounds were then subjected to virtual screening against the TGF-βR1 kinase domain (PDB ID: 6B8Y) using AutoDock Vina 1.2.5, identifying the top three hit compounds—dicoumarol, 2′,3′,4′-trihydroxyflavone, and 2′,3′-dihydroxyflavone. These hits underwent further exhaustive molecular docking for refinement of docking poses, followed by 200-ns MD simulations in triplicate using the AMBER03 force field in GROMACS. Subsequently, the binding free energies were calculated using the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) method. MCS analysis was conducted to determine shared structural features among the top three hits, while ADMET properties were predicted using Deep-PK, a deep learning-based platform. Finally, the ligand–protein interactions were further visualized, analyzed, and rendered using ChimeraX, Discovery Studio Visualizer, and Visual Molecular Dynamics (VMD) program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Hou Y, Wang G, Han S, Liu H, Jia X (2023) Network pharmacology and molecular docking to explore the pharmacological mechanism of Yifei Tongluo granules in treating idiopathic pulmonary fibrosis: a review. Medicine 102(22):e33729. https://doi.org/10.1097/MD.0000000000033729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mao C, Du Y, Niu K, Yang F, Bai C, Zhou B, Niu Y (2024) Investigation of the mechanism of action of Qingzaojiufei decoction on idiopathic pulmonary fibrosis based on network pharmacology and experimental validation. Nat Prod Commun 19(3):1934578X241242274. https://doi.org/10.1177/1934578X241242274

    Article  CAS  Google Scholar 

  3. Raghu G, Remy-Jardin M, Richeldi L, Thomson CC, Inoue Y, Johkoh T, Kreuter M, Lynch DA, Maher TM, Martinez FJ (2022) Idiopathic pulmonary fibrosis (an update) and progressive pulmonary fibrosis in adults: an official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med 205(9):e18–e47. https://doi.org/10.1164/rccm.202202-0399ST

    Article  PubMed  PubMed Central  Google Scholar 

  4. Glass DS, Grossfeld D, Renna HA, Agarwala P, Spiegler P, DeLeon J, Reiss AB (2022) Idiopathic pulmonary fibrosis: current and future treatment. Clin Respir J 16(2):84–96. https://doi.org/10.1111/crj.13466

    Article  PubMed  PubMed Central  Google Scholar 

  5. Raghu G, Remy-Jardin M, Myers JL, Richeldi L, Ryerson CJ, Lederer DJ, Behr J, Cottin V, Danoff SK, Morell F (2018) Diagnosis of idiopathic pulmonary fibrosis An official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med 198(5):e44–e68. https://doi.org/10.1164/rccm.201807-1255ST

    Article  PubMed  Google Scholar 

  6. Lechowicz K, Drożdżal S, Machaj F, Rosik J, Szostak B, Zegan-Barańska M, Biernawska J, Dabrowski W, Rotter I, Kotfis K (2020) COVID-19: the potential treatment of pulmonary fibrosis associated with SARS-CoV-2 infection. J Clin Med 9(6):1917. https://doi.org/10.3390/jcm9061917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yao Y, Yuan Y, Lu Z, Ma Y, Xie Y, Wang M, Liu F, Zhu C, Lin C (2021) Effects of Nervilia fordii extract on pulmonary fibrosis through TGF-β/Smad signaling pathway. Front Pharmacol 12:659627. https://doi.org/10.3389/fphar.2021.659627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang Y, Gu L, PuYang J, Liu M, Xia Q, Jiang W, Cao M (2021) Systems bioinformatic approach to determine the pharmacological mechanisms of Radix Astragali and Radix Angelicae sinensis in idiopathic pulmonary fibrosis. Pharmacogn Mag 17(76):708–718. https://doi.org/10.4103/pm.pm_9_21

    Article  CAS  Google Scholar 

  9. Zhang B, Gao D, Xu G, Zhu W, Liu J, Sun R, Wang L, Zhang C, Ding Q, Shi Y (2022) Integrated multicomponent analysis based on UHPLC-Q-Exactive Orbitrap-MS and network pharmacology to elucidate the potential mechanism of Baoyuan decoction against idiopathic pulmonary fibrosis. Phytochem Anal 33(5):678–695. https://doi.org/10.1002/pca.3120

    Article  CAS  PubMed  Google Scholar 

  10. Jiang C, Huang H, Liu J, Wang Y, Lu Z, Xu Z (2012) Adverse events of pirfenidone for the treatment of pulmonary fibrosis: a meta-analysis of randomized controlled trials. https://doi.org/10.1371/journal.pone.0047024

  11. Aravena C, Labarca G, Venegas C, Arenas A, Rada G (2015) Pirfenidone for idiopathic pulmonary fibrosis: a systematic review and meta-analysis. PLoS ONE 10(8):e0136160. https://doi.org/10.1371/journal.pone.0136160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pleasants R, Tighe RM (2019) Management of idiopathic pulmonary fibrosis. Ann Pharmacother 53(12):1238–1248. https://doi.org/10.1177/1060028019862497

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kato M, Sasaki S, Nakamura T, Kurokawa K, Yamada T, Ochi Y (2019) Gastrointestinal adverse effects of nintedanib and the associated risk factors in patients with idiopathic pulmonary fibrosis. Sci Rep 9:12062. https://doi.org/10.1038/s41598-019-48593-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tirunavalli SK, Kuncha M, Sistla R, Andugulapati SB (2023) Targeting TGF-β/periostin signaling by sesamol ameliorates pulmonary fibrosis and improves lung function and survival. J Nutr Biochem 116:109294. https://doi.org/10.1016/j.jnutbio.2023.109294

    Article  CAS  PubMed  Google Scholar 

  15. Mei Q, Liu Z, Zuo H, Yang Z, Qu J (2022) Idiopathic pulmonary fibrosis: an update on pathogenesis. Front Pharmacol 12:797292. https://doi.org/10.3389/fphar.2021.797292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ye Z, Hu Y (2021) TGF-β1: Gentlemanly orchestrator in idiopathic pulmonary fibrosis. Int J Mol Med 48(1):1–14. https://doi.org/10.3389/fphar.2021.797292

    Article  CAS  Google Scholar 

  17. Parada C, Li J, Iwata J, Suzuki A, Chai Y (2013) CTGF mediates Smad-dependent transforming growth factor β signaling to regulate mesenchymal cell proliferation during palate development. Mol Cell Biol. https://doi.org/10.1128/MCB.00615-13

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xiao L, Du Y, Shen Y, He Y, Zhao H, Li Z (2012) TGF-beta 1 induced fibroblast proliferation is mediated by the FGF-2/ERK pathway. Front Biosci (Landmark Ed) 17(7):2667–2674. https://doi.org/10.2741/4077

    Article  CAS  PubMed  Google Scholar 

  19. Shintani Y, Maeda M, Chaika N, Johnson KR, Wheelock MJ (2008) Collagen I promotes epithelial-to-mesenchymal transition in lung cancer cells via transforming growth factor–β signaling. Am J Respir Cell Mol Biol 38(1):95–104. https://doi.org/10.1165/rcmb.2007-0071OC

    Article  CAS  PubMed  Google Scholar 

  20. Karande S, Das B, Acharya SS, Kumar A, Patel H, Sharma A, Gupta M, Ahmad I, Bhandare V, Sharma K (2024) Computational and in vitro screening validates the repositioning potential of Coxibs as anti-fibrotic agents. J Biomol Struct Dyn 1–13. https://doi.org/10.1080/07391102.2024.2318655

  21. Derynck R, Jarrett JA, Chen EY, Eaton DH, Bell JR, Assoian RK, Roberts AB, Sporn MB, Goeddel DV (1985) Human transforming growth factor-β complementary DNA sequence and expression in normal and transformed cells. Nature 316(6030):701–705. https://doi.org/10.1038/316701a0

    Article  CAS  PubMed  Google Scholar 

  22. Massagué J, Andres J, Attisano L, Cheifetz S, López-Casillas F, Ohtsuki M, Wrana JL (1992) TGF-β receptors. Mol Reprod Dev 32(2):99–104. https://doi.org/10.1002/mrd.1080320204

    Article  PubMed  Google Scholar 

  23. Vander Ark A, Cao J, Li X (2018) TGF-β receptors: In and beyond TGF-β signaling. Cell Signal 52:112–120. https://doi.org/10.1016/j.cellsig.2018.09.002

  24. Rojas A, Padidam M, Cress D, Grady WM (2009) TGF-β receptor levels regulate the specificity of signaling pathway activation and biological effects of TGF-β. Biochim Biophys Acta (BBA) Mol Cell Res 1793(7):1165–1173

    Article  CAS  Google Scholar 

  25. Zi Z, Chapnick DA, Liu X (2012) Dynamics of TGF-β/Smad signaling. FEBS Lett 586(14):1921–1928. https://doi.org/10.1016/j.febslet.2012.03.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tzavlaki K, Moustakas A (2020) TGF-β Signaling. Biomolecules 10(3):487. https://doi.org/10.3390/biom10030487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hill CS (2009) Nucleocytoplasmic shuttling of Smad proteins. Cell Res 19(1):36–46. https://doi.org/10.1038/cr.2008.325

    Article  CAS  PubMed  Google Scholar 

  28. Hata A, Chen Y-G (2016) TGF-β signaling from receptors to Smads. Cold Spring Harb Perspect Biol 8(9):a022061. https://doi.org/10.1101/cshperspect.a022061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wiafe B, Adesida A, Churchill T, Adewuyi EE, Li Z, Metcalfe P (2017) Hypoxia-increased expression of genes involved in inflammation, dedifferentiation, pro-fibrosis, and extracellular matrix remodeling of human bladder smooth muscle cells. In Vitro Cell Dev Biol Anim 53:58–66. https://doi.org/10.1007/s11626-016-0085-2

    Article  CAS  PubMed  Google Scholar 

  30. Peterson JM, Jay JW, Wang Y, Joglar AA, Prasai A, Palackic A, Wolf SE, El Ayadi A (2022) Galunisertib exerts antifibrotic effects on TGF-β-induced fibroproliferative dermal fibroblasts. Int J Mol Sci 23(12):6689. https://doi.org/10.3390/ijms23126689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tatler AL, Jenkins G (2012) TGF-β activation and lung fibrosis. Proc Am Thorac Soc 9(3):130–136. https://doi.org/10.1513/pats.201201-003AW

    Article  CAS  PubMed  Google Scholar 

  32. Goodwin A, Jenkins G (2009) Role of integrin-mediated TGFβ activation in the pathogenesis of pulmonary fibrosis. Biochem Soc Trans 37(4):849–854. https://doi.org/10.1042/BST0370849

    Article  CAS  PubMed  Google Scholar 

  33. Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, Zhou Z, Shu G, Yin G (2022) Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther 7(1):3. https://doi.org/10.1038/s41392-021-00762-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Oda K, Yatera K, Izumi H, Ishimoto H, Yamada S, Nakao H, Hanaka T, Ogoshi T, Noguchi S, Mukae H (2016) Profibrotic role of WNT10A via TGF-β signaling in idiopathic pulmonary fibrosis. Respir Res 17:1–14. https://doi.org/10.1186/s12931-016-0357-0

    Article  CAS  Google Scholar 

  35. Peng J, Xiao X, Li S, Lyu X, Gong H, Tan S, Dong L, Sanders YY, Zhang X (2023) Aspirin alleviates pulmonary fibrosis through PI3K/AKT/mTOR-mediated autophagy pathway. Exp Gerontol 172:112085. https://doi.org/10.1016/j.exger.2023.112085

    Article  CAS  PubMed  Google Scholar 

  36. Papavassiliou KA, Sofianidi AA, Spiliopoulos FG, Gogou VA, Gargalionis AN, Papavassiliou AG (2024) YAP/TAZ Signaling in the pathobiology of pulmonary fibrosis. Cells 13(18):1519. https://doi.org/10.3390/cells13181519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Khalil N, Greenberg A The role of TGF‐β in pulmonary fibrosis. In: Ciba Foundation Symposium 157‐Clinical Applications of TGF‐β: Clinical Applications of TGF‐β: Ciba Foundation Symposium 157, 2007. Wiley Online Library, pp 194–211. https://doi.org/10.1002/9780470514061.ch13

  38. Saito A, Horie M, Micke P, Nagase T (2018) The role of TGF-β signaling in lung cancer associated with idiopathic pulmonary fibrosis. Int J Mol Sci 19(11):3611. https://doi.org/10.3390/ijms19113611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Epstein Shochet G, Brook E, Bardenstein-Wald B, Shitrit D (2020) TGF-β pathway activation by idiopathic pulmonary fibrosis (IPF) fibroblast derived soluble factors is mediated by IL-6 trans-signaling. Respir Res 21:1–10. https://doi.org/10.1186/s12931-020-1319-0

    Article  CAS  Google Scholar 

  40. Zhou Y-M, Dong X-R, Xu D, Tang J, Cui Y-L (2023) Therapeutic potential of traditional Chinese medicine for interstitial lung disease. J Ethnopharmacol 318:116952. https://doi.org/10.1016/j.jep.2023.116952

    Article  CAS  PubMed  Google Scholar 

  41. Hasan M, Paul NC, Paul SK, Saikat ASM, Akter H, Mandal M, Lee S-S (2022) Natural product-based potential therapeutic interventions of pulmonary fibrosis. Molecules 27(5):1481. https://doi.org/10.3390/molecules27051481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhao B, Shu X, Zhang H (2024) Pulmonary diseases and traditional Chinese medicine. In: Lung biology and pathophysiology. Taylor & Francis, p 28. https://doi.org/10.1201/9781003355243-17

  43. Deng D, Pei H, Lan T, Zhu J, Tang M, Xue L, Yang Z, Zheng S, Ye H, Chen L (2020) Synthesis and discovery of new compounds bearing coumarin scaffold for the treatment of pulmonary fibrosis. Eur J Med Chem 185:111790. https://doi.org/10.1016/j.ejmech.2019.111790

    Article  CAS  PubMed  Google Scholar 

  44. Flores-Morales V, Villasana-Ruíz AP, Garza-Veloz I, González-Delgado S, Martinez-Fierro ML (2023) Therapeutic effects of coumarins with different substitution patterns. Molecules 28(5):2413. https://doi.org/10.3390/molecules28052413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu Y-M, Nepali K, Liou J-P (2017) Idiopathic pulmonary fibrosis: current status, recent progress, and emerging targets. J Med Chem 60(2):527–553

    Article  CAS  PubMed  Google Scholar 

  46. Fois AG, Sotgiu E, Scano V, Negri S, Mellino S, Zinellu E, Pirina P, Pintus G, Carru C, Mangoni AA (2020) Effects of pirfenidone and nintedanib on markers of systemic oxidative stress and inflammation in patients with idiopathic pulmonary fibrosis: a preliminary report. Antioxidants 9(11):1064. https://doi.org/10.3390/antiox9111064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wollin L, Wex E, Pautsch A, Schnapp G, Hostettler KE, Stowasser S, Kolb M (2015) Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur Respir J 45(5):1434–1445. https://doi.org/10.1183/09031936.00174914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Javed Z, Khan K, Rasheed A, Sadia H, Raza S, Salehi B, Cho WC, Sharifi-Rad J, Koch W, Kukula-Koch W (2021) MicroRNAs and natural compounds mediated regulation of TGF signaling in prostate cancer. Front Pharmacol 11:613464. https://doi.org/10.3389/fphar.2020.613464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gray AL, Stephens CA, Bigelow RL, Coleman DT, Cardelli JA (2014) The polyphenols (−)-epigallocatechin-3-gallate and luteolin synergistically inhibit TGF-β-induced myofibroblast phenotypes through RhoA and ERK inhibition. PLoS ONE 9(10):e109208. https://doi.org/10.1371/journal.pone.0109208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Meng X-m, Zhang Y, Huang X-R, Ren G-l, Li J, Lan HY (2015) Treatment of renal fibrosis by rebalancing TGF-β/Smad signaling with the combination of asiatic acid and naringenin. Oncotarget 6(35):36984. https://doi.org/10.18632/oncotarget.6100

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gursoy N, Sarikurkcu C, Cengiz M, Solak MH (2009) Antioxidant activities, metal contents, total phenolics and flavonoids of seven Morchella species. Food Chem Toxicol 47(9):2381–2388. https://doi.org/10.1016/j.fct.2009.06.032

    Article  CAS  PubMed  Google Scholar 

  52. Sarikurkcu C, Erdoğmuş SF, Yazar T (2024) Phytochemical analysis and in vitro anti-inflammatory, anticancer activities of Marrubium lutescens on melanoma cancer cell line and molecular docking studies. Journal of Herbal Medicine 46:100907. https://doi.org/10.1016/j.hermed.2024.100907

    Article  Google Scholar 

  53. Kontogiorgis CA, Savvoglou K, Hadjipavlou-Litina DJ (2006) Antiinflammatory and antioxidant evaluation of novel coumarin derivatives. J Enzyme Inhib Med Chem 21(1):21–29. https://doi.org/10.1080/14756360500323022

    Article  CAS  PubMed  Google Scholar 

  54. Fylaktakidou KC, Hadjipavlou-Litina DJ, Litinas KE, Nicolaides DN (2004) Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Curr Pharm Des 10(30):3813–3833. https://doi.org/10.2174/1381612043382710

    Article  CAS  PubMed  Google Scholar 

  55. Bezerra FS, Lanzetti M, Nesi RT, Nagato AC, Silva CP, Kennedy-Feitosa E, Melo AC, Cattani-Cavalieri I, Porto LC, Valenca SS (2023) Oxidative stress and inflammation in acute and chronic lung injuries. Antioxidants 12(3):548. https://doi.org/10.3390/antiox12030548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7(2):146–157. https://doi.org/10.2174/157340911795677602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Batool M, Ahmad B, Choi S (2019) A structure-based drug discovery paradigm. Int J Mol Sci 20(11):2783. https://doi.org/10.3390/ijms20112783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rester U (2008) From virtuality to reality-virtual screening in lead discovery and lead optimization: a medicinal chemistry perspective. Curr Opin Drug Discov Devel 11(4):559–568

    CAS  PubMed  Google Scholar 

  59. Kalsi N, Gopalakrishnan C, Rajendran V, Purohit R (2016) Biophysical aspect of phosphatidylinositol 3-kinase and role of oncogenic mutants (E542K & E545K). J Biomol Struct Dyn 34(12):2711–2721. https://doi.org/10.1080/07391102.2015.1127774

    Article  CAS  PubMed  Google Scholar 

  60. Singh R, Purohit R (2023) Computational analysis of protein-ligand interaction by targeting a cell cycle restrainer. Comput Methods Programs Biomed 231:107367. https://doi.org/10.1016/j.cmpb.2023.107367

    Article  PubMed  Google Scholar 

  61. Bhardwaj VK, Purohit R (2023) A comparative study on inclusion complex formation between formononetin and β-cyclodextrin derivatives through multiscale classical and umbrella sampling simulations. Carbohyd Polym 310:120729. https://doi.org/10.1016/j.carbpol.2023.120729

    Article  CAS  Google Scholar 

  62. Bhardwaj V, Singh R, Singh P, Purohit R, Kumar S (2020) Elimination of bitter-off taste of stevioside through structure modification and computational interventions. J Theor Biol 486:110094. https://doi.org/10.1016/j.jtbi.2019.110094

    Article  CAS  PubMed  Google Scholar 

  63. Singh R, Bhardwaj VK, Sharma J, Das P, Purohit R (2022) Identification of selective cyclin-dependent kinase 2 inhibitor from the library of pyrrolone-fused benzosuberene compounds: an in silico exploration. J Biomol Struct Dyn 40(17):7693–7701. https://doi.org/10.1080/07391102.2021.1900918

    Article  CAS  PubMed  Google Scholar 

  64. Singh R, Bhardwaj VK, Purohit R (2022) Inhibition of nonstructural protein 15 of SARS-CoV-2 by golden spice: a computational insight. Cell Biochem Funct 40(8):926–934. https://doi.org/10.1002/cbf.3753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Antar SA, Saleh MA, Al-Karmalawy AA (2022) Investigating the possible mechanisms of pirfenidone to be targeted as a promising anti-inflammatory, anti-fibrotic, anti-oxidant, anti-apoptotic, anti-tumor, and/or anti-SARS-CoV-2. Life Sci 309:121048. https://doi.org/10.1016/j.lfs.2022.121048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sartiani L, Bartolucci G, Pallecchi M, Spinelli V, Cerbai E (2022) Pharmacological basis of the antifibrotic effects of pirfenidone: mechanistic insights from cardiac in-vitro and in-vivo models. Front Cardiovasc Med 9:751499. https://doi.org/10.3389/fcvm.2022.751499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Cheminform 3:33. https://doi.org/10.1186/1758-2946-3-33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Eberhardt J, Santos-Martins D, Tillack A, Forli S (2021) AutoDock Vina 1.2. 0: new docking methods, expanded force field, and Python bindings. J Chem Inf Model 61(8):3891–8. https://doi.org/10.1021/acs.jcim.1c00203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rossino G, Rui M, Pozzetti L, Schepmann D, Wünsch B, Zampieri D, Pellavio G, Laforenza U, Rinaldi S, Colombo G (2020) Setup and validation of a reliable docking protocol for the development of neuroprotective agents by targeting the sigma-1 receptor (S1R). Int J Mol Sci 21(20):7708. https://doi.org/10.3390/ijms21207708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Singh UC, Kollman PA (1984) An approach to computing electrostatic charges for molecules. J Comput Chem 5(2):129–145. https://doi.org/10.1002/jcc.540050204

    Article  CAS  Google Scholar 

  72. Gasteiger J, Marsili M (1978) A new model for calculating atomic charges in molecules. Tetrahedron Lett 19(34):3181–3184. https://doi.org/10.1016/S0040-4039(01)94977-9

    Article  Google Scholar 

  73. Biovia DS (2016) Discovery studio. Dassault Systèmes BIOVIA

  74. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  75. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24(16):1999–2012. https://doi.org/10.1002/jcc.10349

    Article  CAS  PubMed  Google Scholar 

  76. Sousa da Silva AW, Vranken WF (2012) ACPYPE - AnteChamber PYthon Parser interfacE. BMC Res Notes 5:367. https://doi.org/10.1186/1756-0500-5-367

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174. https://doi.org/10.1002/jcc.20035

    Article  CAS  PubMed  Google Scholar 

  78. Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges AM1-BCC model: II Parameterization and validation. J Comput Chem 23(16):1623–1641. https://doi.org/10.1002/jcc.10128

    Article  CAS  PubMed  Google Scholar 

  79. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  80. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092. https://doi.org/10.1063/1.464397

    Article  CAS  Google Scholar 

  81. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593. https://doi.org/10.1063/1.470117

    Article  CAS  Google Scholar 

  82. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52(12):7182–7190. https://doi.org/10.1063/1.328693

    Article  CAS  Google Scholar 

  83. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. The Journal of chemical physics 126 (1). https://doi.org/10.1063/1.2408420

  84. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  85. Srinivasan J, Cheatham TE, Cieplak P, Kollman PA, Case DA (1998) Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate− DNA helices. J Am Chem Soc 120(37):9401–9409. https://doi.org/10.1021/ja981844+

    Article  CAS  Google Scholar 

  86. Massova I, Kollman PA (2000) Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspect Drug Discovery Des 18:113–135. https://doi.org/10.1023/A:1008763014207

    Article  CAS  Google Scholar 

  87. Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10(5):449–461. https://doi.org/10.1517/17460441.2015.1032936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Miller BR III, McGee TD Jr, Swails JM, Homeyer N, Gohlke H, Roitberg AE (2012) MMPBSA. py: an efficient program for end-state free energy calculations. J Chem Theory Comput 8(9):3314–3321

    Article  CAS  PubMed  Google Scholar 

  89. Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, Moreno E (2021) gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS. J Chem Theory Comput 17(10):6281–6291. https://doi.org/10.1021/acs.jctc.1c00645

    Article  CAS  PubMed  Google Scholar 

  90. Myung Y, de Sá AG, Ascher DB (2024) Deep-PK: deep learning for small molecule pharmacokinetic and toxicity prediction. Nucleic Acids Res 52(W1):W469-75. https://doi.org/10.1093/nar/gkae254

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hassan GS, Farag NA, Hegazy GH, Arafa RK (2008) Design and synthesis of novel benzopyran-2-one derivatives of expected antimicrobial activity through DNA gyrase-B inhibition. Archiv der Pharmazie 341(11):725–733. https://doi.org/10.1002/ardp.200700266

    Article  CAS  PubMed  Google Scholar 

  92. Li W, Liu X, Muhammad S, Shi J, Meng Y, Wang J (2018) Computational investigation of tgf-β receptor inhibitors for treatment of idiopathic pulmonary fibrosis: field-based QSAR model and molecular dynamics simulation. Comput Biol Chem 76:139–150. https://doi.org/10.1016/j.compbiolchem.2018.07.002

    Article  CAS  PubMed  Google Scholar 

  93. Jiang J-H, Deng P (2019) Discovery of new inhibitors of transforming growth factor-beta type 1 receptor by utilizing docking and structure-activity relationship analysis. Int J Mol Sci 20(17):4090. https://doi.org/10.3390/ijms20174090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Harikrishnan LS, Warrier J, Tebben AJ, Tonukunuru G, Madduri SR, Baligar V, Mannoori R, Seshadri B, Rahaman H, Arunachalam P (2018) Heterobicyclic inhibitors of transforming growth factor beta receptor I (TGFβRI). Bioorg Med Chem 26(5):1026–1034. https://doi.org/10.1016/j.bmc.2018.01.014

    Article  CAS  PubMed  Google Scholar 

  95. Antoniades H, Bravo M, Ra A, Galanopoulos T, Neville-Golden J, Maxwell M, Selman M (1990) Platelet-derived growth factor in idiopathic pulmonary fibrosis. J Clin Investig 86(4):1055–1064. https://doi.org/10.1172/JCI114808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Effendi WI, Nagano T (2022) Connective tissue growth factor in idiopathic pulmonary fibrosis: breaking the bridge. Int J Mol Sci 23(11):6064. https://doi.org/10.3390/ijms23116064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Guzy R (2020) Fibroblast growth factor inhibitors in lung fibrosis: friends or foes? Am J RespirCell Mol Biol 63(3):273–274. https://doi.org/10.1165/rcmb.2020-0156ED

    Article  CAS  Google Scholar 

  98. Patel M, Post Y, Hill N, Sura A, Ye J, Fisher T, Suen N, Zhang M, Cheng L, Pribluda A (2024) A WNT mimetic with broad spectrum FZD-specificity decreases fibrosis and improves function in a pulmonary damage model. Respir Res 25(1):153. https://doi.org/10.1186/s12931-024-02786-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Xia H, Diebold D, Nho R, Perlman D, Kleidon J, Kahm J, Avdulov S, Peterson M, Nerva J, Bitterman P (2008) Pathological integrin signaling enhances proliferation of primary lung fibroblasts from patients with idiopathic pulmonary fibrosis. J Exp Med 205(7):1659–1672. https://doi.org/10.1084/jem.20080001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Assoc. Prof. Dr. Yasemin Saygıdeğer (Faculty of Medicine, Department of Internal Medicine, Division of Pulmonary Diseases, Çukurova University) for originally proposing the concept that led to this study.

Funding

The financial support for this study was received from CNPq and CAPES (Financial code 001), as well as the Centro Nacional de Supercomputação (CESUP) and Universidade Federal do Rio Grande do Sul (UFRGS) provided HPC resources. Also, the hardware required for in silico docking simulations conducted in this study was provided by financial support from project FBA202012708, funded by the Scientific Research Projects Unit at Çukurova University.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: E.S.I.; calculations: E.S.I and P.A.N.; data analysis: E.S.I and P.A.N.; writing—original draft preparation: E.S.I and P.A.N.; project administration: E.S.I and P.A.N.

Corresponding authors

Correspondence to Erman Salih Istifli or Paulo A. Netz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3642 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Istifli, E.S., Netz, P.A. Interactions of flavonoid and coumarin derivative compounds with transforming growth factor-beta receptor 1 (TGF-βR1): integrating virtual screening, molecular dynamics, maximum common substructure, and ADMET approaches in the treatment of idiopathic pulmonary fibrosis. J Mol Model 31, 124 (2025). https://doi.org/10.1007/s00894-025-06338-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s00894-025-06338-3

Keywords

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载