Abstract
Context
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease characterized by very limited treatment options and significant side effects from existing therapies, highlighting the urgent need for more effective drug-like molecules. Transforming growth factor-beta receptor 1 (TGF-βR1) is a key player in the pathogenesis of IPF and represents a critical target for therapeutic intervention. In this study, the potential of plant-derived flavonoid and coumarin compounds as novel TGF-βR1 inhibitors was explored. A total of 1206 flavonoid and coumarin derivatives were investigated through a series of computational approaches, including drug-like filtering, virtual screening, molecular docking, 200-ns molecular dynamics (MD) simulations in triplicate, maximum common substructure (MCS) analysis, and absorption-distribution-metabolism-excretion-toxicity (ADMET) profiling. 2′,3′,4′-trihydroxyflavone and dicoumarol emerged as promising plant-based hit candidates, exhibiting comparable docking scores, MD-based structural stability, and more negative MM/PBSA binding free energy relative to the co-crystallized inhibitor, while surpassing pirfenidone in these parameters and demonstrating superior pharmacological properties. In light of the findings from this study, 2′,3′,4′-trihydroxyflavone and dicoumarol could be considered novel TGF-βR1 inhibitors for IPF treatment, and it is recommended that their structural optimization be pursued through in vitro binding assays and in vivo animal studies.
Methods
The initial dataset of 1206 flavonoid and coumarin derivatives was filtered for drug-likeness using Lipinski’s Rule of Five in the ChemMaster—Pro 1.2 program, resulting in 161 potential candidates. These compounds were then subjected to virtual screening against the TGF-βR1 kinase domain (PDB ID: 6B8Y) using AutoDock Vina 1.2.5, identifying the top three hit compounds—dicoumarol, 2′,3′,4′-trihydroxyflavone, and 2′,3′-dihydroxyflavone. These hits underwent further exhaustive molecular docking for refinement of docking poses, followed by 200-ns MD simulations in triplicate using the AMBER03 force field in GROMACS. Subsequently, the binding free energies were calculated using the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) method. MCS analysis was conducted to determine shared structural features among the top three hits, while ADMET properties were predicted using Deep-PK, a deep learning-based platform. Finally, the ligand–protein interactions were further visualized, analyzed, and rendered using ChimeraX, Discovery Studio Visualizer, and Visual Molecular Dynamics (VMD) program.
Similar content being viewed by others
Data availability
No datasets were generated or analysed during the current study.
References
Hou Y, Wang G, Han S, Liu H, Jia X (2023) Network pharmacology and molecular docking to explore the pharmacological mechanism of Yifei Tongluo granules in treating idiopathic pulmonary fibrosis: a review. Medicine 102(22):e33729. https://doi.org/10.1097/MD.0000000000033729
Mao C, Du Y, Niu K, Yang F, Bai C, Zhou B, Niu Y (2024) Investigation of the mechanism of action of Qingzaojiufei decoction on idiopathic pulmonary fibrosis based on network pharmacology and experimental validation. Nat Prod Commun 19(3):1934578X241242274. https://doi.org/10.1177/1934578X241242274
Raghu G, Remy-Jardin M, Richeldi L, Thomson CC, Inoue Y, Johkoh T, Kreuter M, Lynch DA, Maher TM, Martinez FJ (2022) Idiopathic pulmonary fibrosis (an update) and progressive pulmonary fibrosis in adults: an official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med 205(9):e18–e47. https://doi.org/10.1164/rccm.202202-0399ST
Glass DS, Grossfeld D, Renna HA, Agarwala P, Spiegler P, DeLeon J, Reiss AB (2022) Idiopathic pulmonary fibrosis: current and future treatment. Clin Respir J 16(2):84–96. https://doi.org/10.1111/crj.13466
Raghu G, Remy-Jardin M, Myers JL, Richeldi L, Ryerson CJ, Lederer DJ, Behr J, Cottin V, Danoff SK, Morell F (2018) Diagnosis of idiopathic pulmonary fibrosis An official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med 198(5):e44–e68. https://doi.org/10.1164/rccm.201807-1255ST
Lechowicz K, Drożdżal S, Machaj F, Rosik J, Szostak B, Zegan-Barańska M, Biernawska J, Dabrowski W, Rotter I, Kotfis K (2020) COVID-19: the potential treatment of pulmonary fibrosis associated with SARS-CoV-2 infection. J Clin Med 9(6):1917. https://doi.org/10.3390/jcm9061917
Yao Y, Yuan Y, Lu Z, Ma Y, Xie Y, Wang M, Liu F, Zhu C, Lin C (2021) Effects of Nervilia fordii extract on pulmonary fibrosis through TGF-β/Smad signaling pathway. Front Pharmacol 12:659627. https://doi.org/10.3389/fphar.2021.659627
Zhang Y, Gu L, PuYang J, Liu M, Xia Q, Jiang W, Cao M (2021) Systems bioinformatic approach to determine the pharmacological mechanisms of Radix Astragali and Radix Angelicae sinensis in idiopathic pulmonary fibrosis. Pharmacogn Mag 17(76):708–718. https://doi.org/10.4103/pm.pm_9_21
Zhang B, Gao D, Xu G, Zhu W, Liu J, Sun R, Wang L, Zhang C, Ding Q, Shi Y (2022) Integrated multicomponent analysis based on UHPLC-Q-Exactive Orbitrap-MS and network pharmacology to elucidate the potential mechanism of Baoyuan decoction against idiopathic pulmonary fibrosis. Phytochem Anal 33(5):678–695. https://doi.org/10.1002/pca.3120
Jiang C, Huang H, Liu J, Wang Y, Lu Z, Xu Z (2012) Adverse events of pirfenidone for the treatment of pulmonary fibrosis: a meta-analysis of randomized controlled trials. https://doi.org/10.1371/journal.pone.0047024
Aravena C, Labarca G, Venegas C, Arenas A, Rada G (2015) Pirfenidone for idiopathic pulmonary fibrosis: a systematic review and meta-analysis. PLoS ONE 10(8):e0136160. https://doi.org/10.1371/journal.pone.0136160
Pleasants R, Tighe RM (2019) Management of idiopathic pulmonary fibrosis. Ann Pharmacother 53(12):1238–1248. https://doi.org/10.1177/1060028019862497
Kato M, Sasaki S, Nakamura T, Kurokawa K, Yamada T, Ochi Y (2019) Gastrointestinal adverse effects of nintedanib and the associated risk factors in patients with idiopathic pulmonary fibrosis. Sci Rep 9:12062. https://doi.org/10.1038/s41598-019-48593-4
Tirunavalli SK, Kuncha M, Sistla R, Andugulapati SB (2023) Targeting TGF-β/periostin signaling by sesamol ameliorates pulmonary fibrosis and improves lung function and survival. J Nutr Biochem 116:109294. https://doi.org/10.1016/j.jnutbio.2023.109294
Mei Q, Liu Z, Zuo H, Yang Z, Qu J (2022) Idiopathic pulmonary fibrosis: an update on pathogenesis. Front Pharmacol 12:797292. https://doi.org/10.3389/fphar.2021.797292
Ye Z, Hu Y (2021) TGF-β1: Gentlemanly orchestrator in idiopathic pulmonary fibrosis. Int J Mol Med 48(1):1–14. https://doi.org/10.3389/fphar.2021.797292
Parada C, Li J, Iwata J, Suzuki A, Chai Y (2013) CTGF mediates Smad-dependent transforming growth factor β signaling to regulate mesenchymal cell proliferation during palate development. Mol Cell Biol. https://doi.org/10.1128/MCB.00615-13
Xiao L, Du Y, Shen Y, He Y, Zhao H, Li Z (2012) TGF-beta 1 induced fibroblast proliferation is mediated by the FGF-2/ERK pathway. Front Biosci (Landmark Ed) 17(7):2667–2674. https://doi.org/10.2741/4077
Shintani Y, Maeda M, Chaika N, Johnson KR, Wheelock MJ (2008) Collagen I promotes epithelial-to-mesenchymal transition in lung cancer cells via transforming growth factor–β signaling. Am J Respir Cell Mol Biol 38(1):95–104. https://doi.org/10.1165/rcmb.2007-0071OC
Karande S, Das B, Acharya SS, Kumar A, Patel H, Sharma A, Gupta M, Ahmad I, Bhandare V, Sharma K (2024) Computational and in vitro screening validates the repositioning potential of Coxibs as anti-fibrotic agents. J Biomol Struct Dyn 1–13. https://doi.org/10.1080/07391102.2024.2318655
Derynck R, Jarrett JA, Chen EY, Eaton DH, Bell JR, Assoian RK, Roberts AB, Sporn MB, Goeddel DV (1985) Human transforming growth factor-β complementary DNA sequence and expression in normal and transformed cells. Nature 316(6030):701–705. https://doi.org/10.1038/316701a0
Massagué J, Andres J, Attisano L, Cheifetz S, López-Casillas F, Ohtsuki M, Wrana JL (1992) TGF-β receptors. Mol Reprod Dev 32(2):99–104. https://doi.org/10.1002/mrd.1080320204
Vander Ark A, Cao J, Li X (2018) TGF-β receptors: In and beyond TGF-β signaling. Cell Signal 52:112–120. https://doi.org/10.1016/j.cellsig.2018.09.002
Rojas A, Padidam M, Cress D, Grady WM (2009) TGF-β receptor levels regulate the specificity of signaling pathway activation and biological effects of TGF-β. Biochim Biophys Acta (BBA) Mol Cell Res 1793(7):1165–1173
Zi Z, Chapnick DA, Liu X (2012) Dynamics of TGF-β/Smad signaling. FEBS Lett 586(14):1921–1928. https://doi.org/10.1016/j.febslet.2012.03.063
Tzavlaki K, Moustakas A (2020) TGF-β Signaling. Biomolecules 10(3):487. https://doi.org/10.3390/biom10030487
Hill CS (2009) Nucleocytoplasmic shuttling of Smad proteins. Cell Res 19(1):36–46. https://doi.org/10.1038/cr.2008.325
Hata A, Chen Y-G (2016) TGF-β signaling from receptors to Smads. Cold Spring Harb Perspect Biol 8(9):a022061. https://doi.org/10.1101/cshperspect.a022061
Wiafe B, Adesida A, Churchill T, Adewuyi EE, Li Z, Metcalfe P (2017) Hypoxia-increased expression of genes involved in inflammation, dedifferentiation, pro-fibrosis, and extracellular matrix remodeling of human bladder smooth muscle cells. In Vitro Cell Dev Biol Anim 53:58–66. https://doi.org/10.1007/s11626-016-0085-2
Peterson JM, Jay JW, Wang Y, Joglar AA, Prasai A, Palackic A, Wolf SE, El Ayadi A (2022) Galunisertib exerts antifibrotic effects on TGF-β-induced fibroproliferative dermal fibroblasts. Int J Mol Sci 23(12):6689. https://doi.org/10.3390/ijms23126689
Tatler AL, Jenkins G (2012) TGF-β activation and lung fibrosis. Proc Am Thorac Soc 9(3):130–136. https://doi.org/10.1513/pats.201201-003AW
Goodwin A, Jenkins G (2009) Role of integrin-mediated TGFβ activation in the pathogenesis of pulmonary fibrosis. Biochem Soc Trans 37(4):849–854. https://doi.org/10.1042/BST0370849
Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, Zhou Z, Shu G, Yin G (2022) Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther 7(1):3. https://doi.org/10.1038/s41392-021-00762-6
Oda K, Yatera K, Izumi H, Ishimoto H, Yamada S, Nakao H, Hanaka T, Ogoshi T, Noguchi S, Mukae H (2016) Profibrotic role of WNT10A via TGF-β signaling in idiopathic pulmonary fibrosis. Respir Res 17:1–14. https://doi.org/10.1186/s12931-016-0357-0
Peng J, Xiao X, Li S, Lyu X, Gong H, Tan S, Dong L, Sanders YY, Zhang X (2023) Aspirin alleviates pulmonary fibrosis through PI3K/AKT/mTOR-mediated autophagy pathway. Exp Gerontol 172:112085. https://doi.org/10.1016/j.exger.2023.112085
Papavassiliou KA, Sofianidi AA, Spiliopoulos FG, Gogou VA, Gargalionis AN, Papavassiliou AG (2024) YAP/TAZ Signaling in the pathobiology of pulmonary fibrosis. Cells 13(18):1519. https://doi.org/10.3390/cells13181519
Khalil N, Greenberg A The role of TGF‐β in pulmonary fibrosis. In: Ciba Foundation Symposium 157‐Clinical Applications of TGF‐β: Clinical Applications of TGF‐β: Ciba Foundation Symposium 157, 2007. Wiley Online Library, pp 194–211. https://doi.org/10.1002/9780470514061.ch13
Saito A, Horie M, Micke P, Nagase T (2018) The role of TGF-β signaling in lung cancer associated with idiopathic pulmonary fibrosis. Int J Mol Sci 19(11):3611. https://doi.org/10.3390/ijms19113611
Epstein Shochet G, Brook E, Bardenstein-Wald B, Shitrit D (2020) TGF-β pathway activation by idiopathic pulmonary fibrosis (IPF) fibroblast derived soluble factors is mediated by IL-6 trans-signaling. Respir Res 21:1–10. https://doi.org/10.1186/s12931-020-1319-0
Zhou Y-M, Dong X-R, Xu D, Tang J, Cui Y-L (2023) Therapeutic potential of traditional Chinese medicine for interstitial lung disease. J Ethnopharmacol 318:116952. https://doi.org/10.1016/j.jep.2023.116952
Hasan M, Paul NC, Paul SK, Saikat ASM, Akter H, Mandal M, Lee S-S (2022) Natural product-based potential therapeutic interventions of pulmonary fibrosis. Molecules 27(5):1481. https://doi.org/10.3390/molecules27051481
Zhao B, Shu X, Zhang H (2024) Pulmonary diseases and traditional Chinese medicine. In: Lung biology and pathophysiology. Taylor & Francis, p 28. https://doi.org/10.1201/9781003355243-17
Deng D, Pei H, Lan T, Zhu J, Tang M, Xue L, Yang Z, Zheng S, Ye H, Chen L (2020) Synthesis and discovery of new compounds bearing coumarin scaffold for the treatment of pulmonary fibrosis. Eur J Med Chem 185:111790. https://doi.org/10.1016/j.ejmech.2019.111790
Flores-Morales V, Villasana-Ruíz AP, Garza-Veloz I, González-Delgado S, Martinez-Fierro ML (2023) Therapeutic effects of coumarins with different substitution patterns. Molecules 28(5):2413. https://doi.org/10.3390/molecules28052413
Liu Y-M, Nepali K, Liou J-P (2017) Idiopathic pulmonary fibrosis: current status, recent progress, and emerging targets. J Med Chem 60(2):527–553
Fois AG, Sotgiu E, Scano V, Negri S, Mellino S, Zinellu E, Pirina P, Pintus G, Carru C, Mangoni AA (2020) Effects of pirfenidone and nintedanib on markers of systemic oxidative stress and inflammation in patients with idiopathic pulmonary fibrosis: a preliminary report. Antioxidants 9(11):1064. https://doi.org/10.3390/antiox9111064
Wollin L, Wex E, Pautsch A, Schnapp G, Hostettler KE, Stowasser S, Kolb M (2015) Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur Respir J 45(5):1434–1445. https://doi.org/10.1183/09031936.00174914
Javed Z, Khan K, Rasheed A, Sadia H, Raza S, Salehi B, Cho WC, Sharifi-Rad J, Koch W, Kukula-Koch W (2021) MicroRNAs and natural compounds mediated regulation of TGF signaling in prostate cancer. Front Pharmacol 11:613464. https://doi.org/10.3389/fphar.2020.613464
Gray AL, Stephens CA, Bigelow RL, Coleman DT, Cardelli JA (2014) The polyphenols (−)-epigallocatechin-3-gallate and luteolin synergistically inhibit TGF-β-induced myofibroblast phenotypes through RhoA and ERK inhibition. PLoS ONE 9(10):e109208. https://doi.org/10.1371/journal.pone.0109208
Meng X-m, Zhang Y, Huang X-R, Ren G-l, Li J, Lan HY (2015) Treatment of renal fibrosis by rebalancing TGF-β/Smad signaling with the combination of asiatic acid and naringenin. Oncotarget 6(35):36984. https://doi.org/10.18632/oncotarget.6100
Gursoy N, Sarikurkcu C, Cengiz M, Solak MH (2009) Antioxidant activities, metal contents, total phenolics and flavonoids of seven Morchella species. Food Chem Toxicol 47(9):2381–2388. https://doi.org/10.1016/j.fct.2009.06.032
Sarikurkcu C, Erdoğmuş SF, Yazar T (2024) Phytochemical analysis and in vitro anti-inflammatory, anticancer activities of Marrubium lutescens on melanoma cancer cell line and molecular docking studies. Journal of Herbal Medicine 46:100907. https://doi.org/10.1016/j.hermed.2024.100907
Kontogiorgis CA, Savvoglou K, Hadjipavlou-Litina DJ (2006) Antiinflammatory and antioxidant evaluation of novel coumarin derivatives. J Enzyme Inhib Med Chem 21(1):21–29. https://doi.org/10.1080/14756360500323022
Fylaktakidou KC, Hadjipavlou-Litina DJ, Litinas KE, Nicolaides DN (2004) Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Curr Pharm Des 10(30):3813–3833. https://doi.org/10.2174/1381612043382710
Bezerra FS, Lanzetti M, Nesi RT, Nagato AC, Silva CP, Kennedy-Feitosa E, Melo AC, Cattani-Cavalieri I, Porto LC, Valenca SS (2023) Oxidative stress and inflammation in acute and chronic lung injuries. Antioxidants 12(3):548. https://doi.org/10.3390/antiox12030548
Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7(2):146–157. https://doi.org/10.2174/157340911795677602
Batool M, Ahmad B, Choi S (2019) A structure-based drug discovery paradigm. Int J Mol Sci 20(11):2783. https://doi.org/10.3390/ijms20112783
Rester U (2008) From virtuality to reality-virtual screening in lead discovery and lead optimization: a medicinal chemistry perspective. Curr Opin Drug Discov Devel 11(4):559–568
Kalsi N, Gopalakrishnan C, Rajendran V, Purohit R (2016) Biophysical aspect of phosphatidylinositol 3-kinase and role of oncogenic mutants (E542K & E545K). J Biomol Struct Dyn 34(12):2711–2721. https://doi.org/10.1080/07391102.2015.1127774
Singh R, Purohit R (2023) Computational analysis of protein-ligand interaction by targeting a cell cycle restrainer. Comput Methods Programs Biomed 231:107367. https://doi.org/10.1016/j.cmpb.2023.107367
Bhardwaj VK, Purohit R (2023) A comparative study on inclusion complex formation between formononetin and β-cyclodextrin derivatives through multiscale classical and umbrella sampling simulations. Carbohyd Polym 310:120729. https://doi.org/10.1016/j.carbpol.2023.120729
Bhardwaj V, Singh R, Singh P, Purohit R, Kumar S (2020) Elimination of bitter-off taste of stevioside through structure modification and computational interventions. J Theor Biol 486:110094. https://doi.org/10.1016/j.jtbi.2019.110094
Singh R, Bhardwaj VK, Sharma J, Das P, Purohit R (2022) Identification of selective cyclin-dependent kinase 2 inhibitor from the library of pyrrolone-fused benzosuberene compounds: an in silico exploration. J Biomol Struct Dyn 40(17):7693–7701. https://doi.org/10.1080/07391102.2021.1900918
Singh R, Bhardwaj VK, Purohit R (2022) Inhibition of nonstructural protein 15 of SARS-CoV-2 by golden spice: a computational insight. Cell Biochem Funct 40(8):926–934. https://doi.org/10.1002/cbf.3753
Antar SA, Saleh MA, Al-Karmalawy AA (2022) Investigating the possible mechanisms of pirfenidone to be targeted as a promising anti-inflammatory, anti-fibrotic, anti-oxidant, anti-apoptotic, anti-tumor, and/or anti-SARS-CoV-2. Life Sci 309:121048. https://doi.org/10.1016/j.lfs.2022.121048
Sartiani L, Bartolucci G, Pallecchi M, Spinelli V, Cerbai E (2022) Pharmacological basis of the antifibrotic effects of pirfenidone: mechanistic insights from cardiac in-vitro and in-vivo models. Front Cardiovasc Med 9:751499. https://doi.org/10.3389/fcvm.2022.751499
O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Cheminform 3:33. https://doi.org/10.1186/1758-2946-3-33
Eberhardt J, Santos-Martins D, Tillack A, Forli S (2021) AutoDock Vina 1.2. 0: new docking methods, expanded force field, and Python bindings. J Chem Inf Model 61(8):3891–8. https://doi.org/10.1021/acs.jcim.1c00203
Rossino G, Rui M, Pozzetti L, Schepmann D, Wünsch B, Zampieri D, Pellavio G, Laforenza U, Rinaldi S, Colombo G (2020) Setup and validation of a reliable docking protocol for the development of neuroprotective agents by targeting the sigma-1 receptor (S1R). Int J Mol Sci 21(20):7708. https://doi.org/10.3390/ijms21207708
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. https://doi.org/10.1002/jcc.21256
Singh UC, Kollman PA (1984) An approach to computing electrostatic charges for molecules. J Comput Chem 5(2):129–145. https://doi.org/10.1002/jcc.540050204
Gasteiger J, Marsili M (1978) A new model for calculating atomic charges in molecules. Tetrahedron Lett 19(34):3181–3184. https://doi.org/10.1016/S0040-4039(01)94977-9
Biovia DS (2016) Discovery studio. Dassault Systèmes BIOVIA
Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001
Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24(16):1999–2012. https://doi.org/10.1002/jcc.10349
Sousa da Silva AW, Vranken WF (2012) ACPYPE - AnteChamber PYthon Parser interfacE. BMC Res Notes 5:367. https://doi.org/10.1186/1756-0500-5-367
Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174. https://doi.org/10.1002/jcc.20035
Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges AM1-BCC model: II Parameterization and validation. J Comput Chem 23(16):1623–1641. https://doi.org/10.1002/jcc.10128
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935. https://doi.org/10.1063/1.445869
Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092. https://doi.org/10.1063/1.464397
Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593. https://doi.org/10.1063/1.470117
Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52(12):7182–7190. https://doi.org/10.1063/1.328693
Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. The Journal of chemical physics 126 (1). https://doi.org/10.1063/1.2408420
Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38. https://doi.org/10.1016/0263-7855(96)00018-5
Srinivasan J, Cheatham TE, Cieplak P, Kollman PA, Case DA (1998) Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate− DNA helices. J Am Chem Soc 120(37):9401–9409. https://doi.org/10.1021/ja981844+
Massova I, Kollman PA (2000) Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspect Drug Discovery Des 18:113–135. https://doi.org/10.1023/A:1008763014207
Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10(5):449–461. https://doi.org/10.1517/17460441.2015.1032936
Miller BR III, McGee TD Jr, Swails JM, Homeyer N, Gohlke H, Roitberg AE (2012) MMPBSA. py: an efficient program for end-state free energy calculations. J Chem Theory Comput 8(9):3314–3321
Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, Moreno E (2021) gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS. J Chem Theory Comput 17(10):6281–6291. https://doi.org/10.1021/acs.jctc.1c00645
Myung Y, de Sá AG, Ascher DB (2024) Deep-PK: deep learning for small molecule pharmacokinetic and toxicity prediction. Nucleic Acids Res 52(W1):W469-75. https://doi.org/10.1093/nar/gkae254
Hassan GS, Farag NA, Hegazy GH, Arafa RK (2008) Design and synthesis of novel benzopyran-2-one derivatives of expected antimicrobial activity through DNA gyrase-B inhibition. Archiv der Pharmazie 341(11):725–733. https://doi.org/10.1002/ardp.200700266
Li W, Liu X, Muhammad S, Shi J, Meng Y, Wang J (2018) Computational investigation of tgf-β receptor inhibitors for treatment of idiopathic pulmonary fibrosis: field-based QSAR model and molecular dynamics simulation. Comput Biol Chem 76:139–150. https://doi.org/10.1016/j.compbiolchem.2018.07.002
Jiang J-H, Deng P (2019) Discovery of new inhibitors of transforming growth factor-beta type 1 receptor by utilizing docking and structure-activity relationship analysis. Int J Mol Sci 20(17):4090. https://doi.org/10.3390/ijms20174090
Harikrishnan LS, Warrier J, Tebben AJ, Tonukunuru G, Madduri SR, Baligar V, Mannoori R, Seshadri B, Rahaman H, Arunachalam P (2018) Heterobicyclic inhibitors of transforming growth factor beta receptor I (TGFβRI). Bioorg Med Chem 26(5):1026–1034. https://doi.org/10.1016/j.bmc.2018.01.014
Antoniades H, Bravo M, Ra A, Galanopoulos T, Neville-Golden J, Maxwell M, Selman M (1990) Platelet-derived growth factor in idiopathic pulmonary fibrosis. J Clin Investig 86(4):1055–1064. https://doi.org/10.1172/JCI114808
Effendi WI, Nagano T (2022) Connective tissue growth factor in idiopathic pulmonary fibrosis: breaking the bridge. Int J Mol Sci 23(11):6064. https://doi.org/10.3390/ijms23116064
Guzy R (2020) Fibroblast growth factor inhibitors in lung fibrosis: friends or foes? Am J RespirCell Mol Biol 63(3):273–274. https://doi.org/10.1165/rcmb.2020-0156ED
Patel M, Post Y, Hill N, Sura A, Ye J, Fisher T, Suen N, Zhang M, Cheng L, Pribluda A (2024) A WNT mimetic with broad spectrum FZD-specificity decreases fibrosis and improves function in a pulmonary damage model. Respir Res 25(1):153. https://doi.org/10.1186/s12931-024-02786-2
Xia H, Diebold D, Nho R, Perlman D, Kleidon J, Kahm J, Avdulov S, Peterson M, Nerva J, Bitterman P (2008) Pathological integrin signaling enhances proliferation of primary lung fibroblasts from patients with idiopathic pulmonary fibrosis. J Exp Med 205(7):1659–1672. https://doi.org/10.1084/jem.20080001
Acknowledgements
We gratefully acknowledge Assoc. Prof. Dr. Yasemin Saygıdeğer (Faculty of Medicine, Department of Internal Medicine, Division of Pulmonary Diseases, Çukurova University) for originally proposing the concept that led to this study.
Funding
The financial support for this study was received from CNPq and CAPES (Financial code 001), as well as the Centro Nacional de Supercomputação (CESUP) and Universidade Federal do Rio Grande do Sul (UFRGS) provided HPC resources. Also, the hardware required for in silico docking simulations conducted in this study was provided by financial support from project FBA202012708, funded by the Scientific Research Projects Unit at Çukurova University.
Author information
Authors and Affiliations
Contributions
Conceptualization: E.S.I.; calculations: E.S.I and P.A.N.; data analysis: E.S.I and P.A.N.; writing—original draft preparation: E.S.I and P.A.N.; project administration: E.S.I and P.A.N.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Istifli, E.S., Netz, P.A. Interactions of flavonoid and coumarin derivative compounds with transforming growth factor-beta receptor 1 (TGF-βR1): integrating virtual screening, molecular dynamics, maximum common substructure, and ADMET approaches in the treatment of idiopathic pulmonary fibrosis. J Mol Model 31, 124 (2025). https://doi.org/10.1007/s00894-025-06338-3
Received:
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1007/s00894-025-06338-3