+
Skip to main content

Advertisement

Log in

A survey on advancement of hybrid type 2 fuzzy sliding mode control

  • Review
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Numerous types of hybridizations between type 2 fuzzy logic system (T2FLS) and sliding mode control (SMC) have been proposed to construct an intelligent and robust controller that departs from the drawbacks of SMC and T2FLS. Recently, these hybridizations have been extended to the hybrid structures that are composed of type 2 fuzzy neural network (T2FNN) and SMC in order to produce adaptive, intelligent and robust controllers. Moreover, optimization algorithms are integrated with these controllers in order to tune/optimize their parameters for a superior control performance. In this paper, a survey of the advances on the hybridization of T2FLS, T2FNN, SMC and computational intelligence algorithms is presented. It has been observed that all the works involving T2FLS employed interval type 2 fuzzy logic systems. Despite the advantages of general type 2 fuzzy logic systems (GT2FLS), no record of applying GT2FLSs has been encountered in this domain. The trend of publications, the limitations associated with previous works and future research directions are outlined in the paper. Expert researchers can use this survey as a benchmark for proposing novel approaches while novice researchers (especially graduate students) can use this survey as a starting point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Mendel JM (2007) Type-2 fuzzy sets and systems: an overview. Comput Intell Mag IEEE 2(1):20–29. doi:10.1109/MCI.2007.380672

    Google Scholar 

  2. Zadeh LA (1974) The concept of a linguistic variable and its application to approximate reasoning. Springer, Berlin

    Google Scholar 

  3. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    MATH  Google Scholar 

  4. Kawaji S, Maeda T, Matsunaga N (1991) Fuzzy control using knowledge acquired from PD control. In: 1991 International Conference on Industrial Electronics, Control and Instrumentation, Proceedings IECON’91. IEEE, pp 1549–1554

  5. Mendel JM, John RI, Feilong L (2006) Interval type-2 fuzzy logic systems made simple. IEEE Trans Fuzzy Syst 14(6):808–821. doi:10.1109/TFUZZ.2006.879986

    Google Scholar 

  6. Bellman RE, Zadeh LA (1970) Decision-making in a fuzzy environment. Manag Sci 17(4):B-141–B-164

    MathSciNet  MATH  Google Scholar 

  7. Kalaivani R, Lakshmi P, Rajeswari K (2015) An improved type-2 fuzzy logic approach based sliding mode controller for vehicle active suspension system. J Vib Eng Technol 3(4):431–446

    Google Scholar 

  8. Tai K, El-Sayed A-R, Biglarbegian M, Gonzalez CI, Castillo O, Mahmud S (2016) Review of recent type-2 fuzzy controller applications. Algorithms 9(2):39

    MathSciNet  Google Scholar 

  9. Castillo O, Melin P, Kacprzyk J, Pedrycz W (2007) Type-2 fuzzy logic: theory and applications. In: 2007 IEEE International Conference on Granular Computing, GRC 2007. IEEE, pp 145–145

  10. Mendel JM, John RIB (2002) Type-2 fuzzy sets made simple. IEEE Trans Fuzzy Syst 10(2):117–127. doi:10.1109/91.995115

    Google Scholar 

  11. Qilian L, Mendel JM (2000) Interval type-2 fuzzy logic systems: theory and design. IEEE Trans Fuzzy Syst 8(5):535–550. doi:10.1109/91.873577

    MATH  Google Scholar 

  12. Karnik NN, Mendel JM, Qilian L (1999) Type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 7(6):643–658. doi:10.1109/91.811231

    Google Scholar 

  13. Karnik NN, Mendel JM (1998) Introduction to type-2 fuzzy logic systems. In: The 1998 IEEE International Conference on Fuzzy Systems Proceedings, 1998. IEEE World Congress on Computational Intelligence, 4–9 May 1998, vol. 912, pp 915–920. doi:10.1109/FUZZY.1998.686240

  14. Mendel JM (2014) General type-2 fuzzy logic systems made simple: a tutorial. IEEE Trans Fuzzy Syst 22(5):1162–1182. doi:10.1109/Tfuzz.2013.2286414

    Google Scholar 

  15. Castillo O, Cervantes L, Soria J, Sanchez M, Castro JR (2016) A generalized type-2 fuzzy granular approach with applications to aerospace. Inf Sci 354:165–177

    Google Scholar 

  16. Ghaemi M, Akbarzadeh-Totonchi M-R (2014) Indirect adaptive interval type-2 fuzzy PI sliding mode control for a class of uncertain nonlinear systems. Iran J Fuzzy Syst 11(5):1–21

    MathSciNet  MATH  Google Scholar 

  17. Larguech S, Aloui S, El Hajjaji A, Chaari A (2015) Adaptive type-2 fuzzy sliding mode control for MIMO nonlinear systems: application to a turbocharged diesel engine. In: 2015 23th Mediterranean Conference on Control and Automation (MED). IEEE, pp 203–210

  18. Zirkohi MM, Lin T-C (2015) Interval type-2 fuzzy-neural network indirect adaptive sliding mode control for an active suspension system. Nonlinear Dyn 79(1):513–526

    Google Scholar 

  19. Shabaniniai F, Etedali N, Ghadamyari A (2014) Type-2 fuzzy sliding mode control for deployment of a robotic team. Nonlinear Stud 21(4):569–578

    MathSciNet  MATH  Google Scholar 

  20. Ramesh T, Panda A, Kumar SS (2013) Type-1 and type-2 fuzzy logic and sliding-mode based speed control of direct torque and flux control induction motor drives—a comparative study. Int J Emerg Electr Power Syst 14(5):385–400

    Google Scholar 

  21. Castillo O, Melin P (2012) Optimization of type-2 fuzzy systems based on bio-inspired methods: a concise review. Inf Sci 205:1–19. doi:10.1016/j.ins.2012.04.003

    Google Scholar 

  22. Hung JY, Gao W, Hung JC (1993) Variable structure control: a survey. IEEE Trans Ind Electron 40(1):2–22

    Google Scholar 

  23. Utkin VI (2013) Sliding modes in control and optimization. Springer, Berlin

    MATH  Google Scholar 

  24. Edwards C, Spurgeon S (1998) Sliding mode control: theory and applications. CRC Press, Boca Raton

    MATH  Google Scholar 

  25. Kchaou M, Toumi A (2015) Generalized H_2 sliding mode control for a class of (TS) fuzzy descriptor systems with time-varying delay and nonlinear perturbations. Advances and applications in sliding mode control systems. Springer, Berlin, pp 353–379

    Google Scholar 

  26. Feng G (2006) A survey on analysis and design of model-based fuzzy control systems. IEEE Trans Fuzzy Syst 14(5):676–697

    MathSciNet  Google Scholar 

  27. Roopaei M, Jahromi MZ (2009) Chattering-free fuzzy sliding mode control in MIMO uncertain systems. Nonlinear Anal Theory Methods Appl 71(10):4430–4437

    MathSciNet  MATH  Google Scholar 

  28. Drakunov SV, Utkin VI (1992) Sliding mode control in dynamic systems. Int J Control 55(4):1029–1037

    MathSciNet  MATH  Google Scholar 

  29. Zinober AS (1994) Variable structure and Lyapunov control. Springer New York Inc, New York

    MATH  Google Scholar 

  30. Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 1:116–132

    MATH  Google Scholar 

  31. Kamel S, Ziyad B, Naguib HM, Mouloud A, Mohamed R (2015) An indirect adaptive type-2 fuzzy sliding mode PSS design to damp power system oscillations. In: Proceedings of 2015 7th International Conference on Modelling, Identification and Control, ICMIC 2015, 2016. doi:10.1109/ICMIC.2015.7409472

  32. Manceur M, Menhour L, Essounbouli N, Hamzaoui A (2013) MIMO sliding fuzzy type-2 control with manipulating approaching phase. In: 2013 10th IEEE International Conference on Networking, Sensing and Control (ICNSC). IEEE, pp 479–485

  33. Masumpoor S, Yaghobi H, Ahmadieh Khanesar M (2015) Adaptive sliding-mode type-2 neuro-fuzzy control of an induction motor. Exp Syst Appl 42(19):6635–6647. doi:10.1016/j.eswa.2015.04.046

    Google Scholar 

  34. Lian RJ (2012) Design of an enhanced adaptive self-organizing fuzzy sliding-mode controller for robotic systems. Exp Syst Appl 39(1):1545–1554. doi:10.1016/j.eswa.2011.08.052

    Google Scholar 

  35. Li THS, Chen CC, Su YT (2012) Optical image stabilizing system using fuzzy sliding-mode controller for digital cameras. IEEE Trans Consum Electron 58(2):237–245. doi:10.1109/TCE.2012.6227418

    Google Scholar 

  36. Song F, Smith SM (2006) Combine sliding mode control and fuzzy logic control for autonomous underwater vehicles. Advanced fuzzy logic technologies in industrial applications. Springer, Berlin, pp 191–205

    Google Scholar 

  37. Yu X, Efe MÖ (2015) Recent advances in sliding modes: from control to intelligent mechatronics. Springer, Berlin

    MATH  Google Scholar 

  38. Masumpoor S, Khanesar MA (2015) Adaptive sliding-mode type-2 neuro-fuzzy control of an induction motor. Exp Syst Appl 42:6635–6647

    Google Scholar 

  39. Bartolini G, Pisano A, Punta E, Usai E (2003) A survey of applications of second-order sliding mode control to mechanical systems. Int J Control 76(9–10):875–892

    MathSciNet  MATH  Google Scholar 

  40. Adloo H, Roopaei M (2011) Review article on adaptive synchronization of chaotic systems with unknown parameters. Nonlinear Dyn 65(1–2):141–159

    MathSciNet  MATH  Google Scholar 

  41. Liu J, Wang X (2011) Fuzzy Sliding Mode Control. Advanced sliding mode control for mechanical systems. Springer, Berlin, pp 233–279

    Google Scholar 

  42. Rezoug A, Hamerlain M, Tadjine M (2012) Adaptive RBFNN type-2 fuzzy sliding mode controller for robot arm with pneumatic muscles. In: 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, pp 1287–1292

  43. Khanesar MA, Kayacan E, Kaynak O, Saeys W (2013) Sliding mode type-2 fuzzy control of robotic arm using ellipsoidal membership functions. In: Control Conference (ASCC), 2013 9th Asian. IEEE, pp 1–6

  44. Daafouz J, Riedinger P, Iung C (2002) Stability analysis and control synthesis for switched systems: a switched Lyapunov function approach. IEEE Trans Autom Control 47(11):1883–1887

    MathSciNet  MATH  Google Scholar 

  45. Chen C-W (2011) Modeling, control, and stability analysis for time-delay TLP systems using the fuzzy Lyapunov method. Neural Comput Appl 20(4):527–534

    Google Scholar 

  46. Khanesar MA, Kaynak O (2016) Recurrent interval type-2 neuro-fuzzy control of an electro hydraulic servo system. In: 2016 IEEE 14th International Workshop on Advanced Motion Control, AMC 2016, pp 593–600. doi:10.1109/AMC.2016.7496414

  47. Mendel JM (2007) Advances in type-2 fuzzy sets and systems. Inf Sci 177(1):84–110

    MathSciNet  MATH  Google Scholar 

  48. Mendel JM (1995) Fuzzy logic systems for engineering: a tutorial. Proc IEEE 83(3):345–377. doi:10.1109/5.364485

    Google Scholar 

  49. Wang LX, Mendel JM (1992) Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans Neural Netw 3(5):807–814. doi:10.1109/72.159070

    Google Scholar 

  50. Wang LX, Mendel JM (1992) Generating fuzzy rules by learning from examples. IEEE Trans Syst Man Cybern 22(6):1414–1427. doi:10.1109/21.199466

    MathSciNet  Google Scholar 

  51. Linda O, Manic M (2012) General type-2 fuzzy c-means algorithm for uncertain fuzzy clustering. IEEE Trans Fuzzy Syst 20(5):883–897

    Google Scholar 

  52. Zhai D, Mendel JM (2011) Computing the centroid of a general type-2 fuzzy set by means of the centroid-flow algorithm. IEEE Trans Fuzzy Syst 19(3):401–422

    Google Scholar 

  53. Zhai D, Mendel JM (2011) Uncertainty measures for general type-2 fuzzy sets. Inf Sci 181(3):503–518

    MathSciNet  MATH  Google Scholar 

  54. Wagner C, Hagras H (2010) Toward general type-2 fuzzy logic systems based on zSlices. IEEE Trans Fuzzy Syst 18(4):637–660

    Google Scholar 

  55. Wagner C, Hagras H (2008) zSlices—towards bridging the gap between interval and general type-2 fuzzy logic. In: IEEE International Conference on Fuzzy Systems, 2008. FUZZ-IEEE 2008. (IEEE World Congress on Computational Intelligence). IEEE, pp 489–497

  56. Liu F (2008) An efficient centroid type-reduction strategy for general type-2 fuzzy logic system. Inf Sci 178(9):2224–2236

    MathSciNet  Google Scholar 

  57. Lucas LA, Centeno TM, Delgado MR (2007) General type-2 fuzzy inference systems: analysis, design and computational aspects. In: Fuzzy Systems Conference, 2007. FUZZ-IEEE 2007. IEEE International, 2007. IEEE, pp 1–6

  58. Coupland S, John R (2007) Geometric type-1 and type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 15(1):3–15

    MATH  Google Scholar 

  59. Kumbasar T, Hagras H (2015) A self-tuning zSlices-based general type-2 fuzzy PI controller. IEEE Trans Fuzzy Syst 23(4):991–1013

    Google Scholar 

  60. Mendel J, Hagras H, Tan W-W, Melek WW, Ying H (2014) Introduction to type-2 fuzzy logic control: theory and applications. Wiley, New York

    MATH  Google Scholar 

  61. Kayacan E, Oniz Y, Aras AC, Kaynak O, Abiyev R (2011) A servo system control with time-varying and nonlinear load conditions using type-2 TSK fuzzy neural system. Appl Soft Comput 11(8):5735–5744

    Google Scholar 

  62. Castillo O, Melin P (2012) A review on the design and optimization of interval type-2 fuzzy controllers. Appl Soft Comput 12(4):1267–1278. doi:10.1016/j.asoc.2011.12.010

    Google Scholar 

  63. Hamza MF, Yap HJ, Choudhury IA (2017) Recent advances on the use of meta-heuristic optimization algorithms to optimize the type-2 fuzzy logic systems in intelligent control. Neural Comput Appl 28(5):979–999

    Google Scholar 

  64. Hamza MF, Yap HJ, Choudhury IA (2016) Advances on the use of meta-heuristic algorithms to optimize type-2 fuzzy logic systems for prediction, classification, clustering and pattern recognition. J Comput Theor Nanosci 13(1):96–109

    Google Scholar 

  65. Kumbasar T, Hagras H (2014) Big Bang–Big Crunch optimization based interval type-2 fuzzy PID cascade controller design strategy. Inf Sci 282:277–295

    Google Scholar 

  66. Soeprijanto A, Abdillah M, Uman DF, Mardlijah P, Rusilawati (2015) Power system stabilizer based on interval type 2 fuzzy sliding mode controller for oscillation damping on 500 kV java-bali electrical power system. J Electr Syst 2015(Special issue 3):1–11

    Google Scholar 

  67. John R, Coupland S (2007) Type-2 fuzzy logic: a historical view. Comput Intell Mag IEEE 2(1):57–62

    Google Scholar 

  68. Nechadi E, Harmas M (2015) Multi-machine power system stabilizer using type-2 adaptive fuzzy sliding mode controller. Eur J Adv Eng Technol 2(8):1–8

    Google Scholar 

  69. Tao C-W, Taur J-S, Chang C-W, Chang Y-H (2012) Simplified type-2 fuzzy sliding controller for wing rock system. Fuzzy Sets Syst 207:111–129

    MathSciNet  MATH  Google Scholar 

  70. Mendel JM (2001) Uncertain rule-based fuzzy logic system: introduction and new directions. Prentice Hall PTR, Upper Saddle River, pp 131–184

    MATH  Google Scholar 

  71. Ren Q, Baron L, Balazinski M (2006) Type-2 Takagi-Sugeno-Kang fuzzy logic modeling using subtractive clustering. In: Fuzzy Information Processing Society, 2006. NAFIPS 2006. Annual meeting of the North American, 2006. IEEE, pp 120–125

  72. Dongrui W (2013) Approaches for reducing the computational cost of interval type-2 fuzzy logic systems: overview and comparisons. IEEE Trans Fuzzy Syst 21(1):80–99. doi:10.1109/TFUZZ.2012.2201728

    Google Scholar 

  73. Karnik NN, Mendel JM (1998) Type-2 fuzzy logic systems: type-reduction. In: 1998 IEEE International Conference on Systems, Man, and Cybernetics, vol. 2042, pp 2046–2051, 11–14 Oct 1998. doi:10.1109/ICSMC.1998.728199

  74. Karnik NN, Mendel JM (1998) Introduction to type-2 fuzzy logic systems. In: The 1998 IEEE International Conference on Fuzzy Systems Proceedings, 1998. IEEE World Congress on Computational Intelligence 1998. IEEE, pp 915–920

  75. Mendel JM (2015) On type-reduction versus direct defuzzification for type-2 fuzzy logic systems. Fifty years of fuzzy logic and its applications. Springer, Berlin, pp 387–399

    Google Scholar 

  76. Wu D (2010) A brief tutorial on interval type-2 fuzzy sets and systems. University of Southern California, USA2012

  77. Wu D (2012) On the fundamental differences between interval type-2 and type-1 fuzzy logic controllers. IEEE Trans Fuzzy Syst 20(5):832–848

    Google Scholar 

  78. Hamza MF, Yap HJ, Choudhury IA (2017) Cuckoo search algorithm based design of interval type-2 fuzzy PID controller for Furuta pendulum system. Eng Appl Artif Intell 62:134–151

    Google Scholar 

  79. Kumbasar T (2016) Robust stability analysis and systematic design of single-input interval type-2 fuzzy logic controllers. IEEE Trans Fuzzy Syst 24(3):675–694

    Google Scholar 

  80. Wu D, Tan WW (2010) Interval type-2 fuzzy PI controllers: Why they are more robust. In: 2010 International Conference on Granular Computing (GrC), 2010 IEEE. IEEE, pp 802–807

  81. Jammeh EA, Fleury M, Wagner C, Hagras H, Ghanbari M (2009) Interval type-2 fuzzy logic congestion control for video streaming across IP networks. IEEE Trans Fuzzy Syst 17(5):1123–1142

    Google Scholar 

  82. Martínez-Soto R, Castillo O, Aguilar LT (2014) Type-1 and Type-2 fuzzy logic controller design using a hybrid PSO–GA optimization method. Inf Sci 285:35–49. doi:10.1016/j.ins.2014.07.012

    MathSciNet  MATH  Google Scholar 

  83. Zeghlache S, Saigaa D, Kara K (2016) Fault tolerant control based on neural network interval type-2 fuzzy sliding mode controller for octorotor UAV. Front Comput Sci. doi:10.1007/s11704-015-4448-8

    Google Scholar 

  84. Chen S, Billings S, Grant P (1990) Non-linear system identification using neural networks. Int J Control 51(6):1191–1214

    MATH  Google Scholar 

  85. Chen X, Li D, Xu Z, Bai Y (2014) Gain adaptive sliding mode controller based on interval type-II fuzzy neural network designed for attitude control for micro aircraft vehicle. Int J Intell Comput Cybern 7(2):209–226

    MathSciNet  Google Scholar 

  86. Palm R (1992) Sliding mode fuzzy control. In: IEEE International Conference on Fuzzy Systems, 1992. IEEE, pp 519–526

  87. Glower JS, Munighan J (1997) Designing fuzzy controllers from a variable structures standpoint. IEEE Trans Fuzzy Syst 5(1):138–144

    Google Scholar 

  88. Khanesar MA, Kaynak O, Yin S, Gao H (2015) Adaptive indirect fuzzy sliding mode controller for networked control systems subject to time-varying network-induced time delay. IEEE Trans Fuzzy Syst 23(1):205–214. doi:10.1109/TFUZZ.2014.2362549

    Google Scholar 

  89. Zhang XZ, Wang YN (2015) Design of robust fuzzy sliding-mode controller for a class of uncertain Takagi–Sugeno nonlinear systems. Int J Comput Commun Control 10(1):136–146

    MathSciNet  Google Scholar 

  90. Khooban MH, Niknam T, Sha-Sadeghi M (2016) A time-varying general type-II fuzzy sliding mode controller for a class of nonlinear power systems. J Intell Fuzzy Syst 30(5):2927–2937. doi:10.3233/IFS-151796

    MATH  Google Scholar 

  91. Jiao X, Fidan B, Jiang J, Kamel M (2015) Adaptive mode switching of hypersonic morphing aircraft based on type-2 TSK fuzzy sliding mode control. Sci China Inf Sci. doi:10.1007/s11432-015-5349-z

    Google Scholar 

  92. Choi S-B, Lee Y-S, Han M-S (2015) Vibration control of a vehicle’s seat suspension featuring a magnetorheological damper based on a new adaptive fuzzy sliding-mode controller. Proc Inst Mech Eng Part D J Autom Eng. doi:10.1177/0954407015586678

    Google Scholar 

  93. Phu DX, Choi SB (2015) Vibration control of a ship engine system using high-load magnetorheological mounts associated with a new indirect fuzzy sliding mode controller. Smart Mater Struct. doi:10.1088/0964-1726/24/2/025009

    Google Scholar 

  94. Quoc NV, Park J-H, Choi S-B (2014) Design of a novel adaptive fuzzy sliding mode controller and application for vibration control of magnetorheological mount. Proc Inst Mech Eng Part C J Mech Eng Sci 228(13):2285–2302

    Google Scholar 

  95. Chan P, Rad AB, Wang J (2001) Indirect adaptive fuzzy sliding mode control: part II: parameter projection and supervisory control. Fuzzy Sets Syst 122(1):31–43

    MATH  Google Scholar 

  96. Huang Y-J, Kuo T-C, Chang S-H (2008) Adaptive sliding-mode control for nonlinearsystems with uncertain parameters. IEEE Trans Syst Man Cybern Part B Cybern 38(2):534–539

    Google Scholar 

  97. Nayak N, Routray SK, Rout PK (2013) Non-linear control and stabilisation of VSC–HVDC transmission system based on Type-2 fuzzy sliding mode control. Int J Autom Control 7(1–2):1–20

    Google Scholar 

  98. Hsiao M-Y, Wang C-T (2013) A finite-time convergent interval type-2 fuzzy sliding-mode controller design for omnidirectional mobile robots. In: 2013 International Conference on Advanced Robotics and Intelligent Systems (ARIS). IEEE, pp 80–85

  99. Hosseini S, Akbarzadeh-T M-R, Naghibi-Sistani M-B (2013) A synchronizing controller using a direct adaptive interval type-2 fuzzy sliding mode strategy. In: 2013 IEEE International Conference on Fuzzy Systems (FUZZ). IEEE, pp 1–8

  100. Fazlyab M, Pedram MZ, Salarieh H, Alasty A (2013) Parameter estimation and interval type-2 fuzzy sliding mode control of a z-axis MEMS gyroscope. ISA Trans 52(6):900–911

    Google Scholar 

  101. Benbrahim M, Essounbouli N, Hamzaoui A, Betta A (2013) Adaptive type-2 fuzzy sliding mode controller for SISO nonlinear systems subject to actuator faults. Int J Autom Comput 10(4):335–342

    Google Scholar 

  102. Abdelaal ME, Emara HM, Bahgat A (2013) Interval type 2 fuzzy sliding mode control with application to inverted pendulum on a cart. In: 2013 IEEE International Conference on Industrial Technology (ICIT). IEEE, pp 100–105

  103. Menhour L, Manceur M, Bouibed K (2012) First order sliding fuzzy interval type-2 control applied for the steering vehicle control. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, pp 1070–1075

  104. Manceur M, Essounbouli N, Hamzaoui A (2012) Second-order sliding fuzzy interval type-2 control for an uncertain system with real application. IEEE Trans Fuzzy Syst 20(2):262–275

    Google Scholar 

  105. Levant A (2003) Higher-order sliding modes, differentiation and output-feedback control. Int J Control 76(9–10):924–941

    MathSciNet  MATH  Google Scholar 

  106. Roopaei M, Jahromi MZ, Ranjbar-Sahraei B, Lin T-C (2011) Synchronization of two different chaotic systems using novel adaptive interval type-2 fuzzy sliding mode control. Nonlinear Dyn 66(4):667–680

    MathSciNet  MATH  Google Scholar 

  107. Roopaei M, Lin T-C, Sahraei BR, Chen M-C (2010) Synchronization of two different chaotic systems using chattering-free adaptive interval type-2 fuzzy sliding mode control. In: 2010 the 5th IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE, pp 121–126

  108. Mardlijah M, Abdillah M, Jazidie A, Widodo B, Santoso A (2011) Performance enhancement of inverted pendulum system by using type 2 fuzzy sliding mode control (T2FSMC). In: 2011 International Conference on Electrical Engineering and Informatics (ICEEI). IEEE, pp 1–6

  109. Koca GO, Akpolat ZH, Özdemir M (2011) Type-2 fuzzy sliding mode control of a four-bar mechanism. Int J Model Simul 31(1):60

    Google Scholar 

  110. Manceur M, Essounbouli N, Hamzaoui A (2011) Higher order sliding fuzzy type-2 interval control for siso uncertain nonlinear systems. In: 2011 IEEE International Conference on Fuzzy Systems (FUZZ). IEEE, pp 1388–1396

  111. Manceur M, Essounbouli N, Hamzaoui A (2010) Robust smooth sliding type-2 interval fuzzy control for uncertain system. In: 2010 IEEE International Conference on Fuzzy Systems (FUZZ). IEEE, pp 1–8

  112. Manceur M, Essounbouli N, Hamzaoui A MIMO second order sliding mode fuzzy type-2 control. In: 2010 IEEE International Conference on Systems Man and Cybernetics (SMC). IEEE, pp 1812–1820

  113. J-h Hwang, H-j Kwak, G-t Park (2011) Adaptive interval type-2 fuzzy sliding mode control for unknown chaotic system. Nonlinear Dyn 63(3):491–502

    MathSciNet  Google Scholar 

  114. Ghadamyari A, Nia FS (2011) Sliding mode control of multi-robot deployment an adaptive interval type-2 fuzzy approach. In: Control, Instrumentation and Automation (ICCIA), 2011 2nd International Conference on, 2011. IEEE, pp 434–439

  115. Al-Khazraji A, Essounbouli N, Hamzaoui A, Nollet F, Zaytoon J (2011) Type-2 fuzzy sliding mode control without reaching phase for nonlinear system. Eng Appl Artif Intell 24(1):23–38

    Google Scholar 

  116. Al-Khazraji A, Hamzaoui A (2011) Robust Tracking Control of Uncertain Dynamic Nonlinear Systems Via Type-2 Fuzzy Sliding Mode Approach. In: 18th World Congress of the International Federation of Automatic Control (IFAC 2011), Milan, Italy, 2011

  117. Li T-H, Hsiao M-Y, Lee J-Z, Tsai S-H (2009) Controlling a time-varying unified chaotic system via interval type 2 fuzzy sliding-mode technique. Int J Nonlinear Sci Numer Simul 10(2):171–180

    Google Scholar 

  118. Ming-Ying H, Shun-Hung T, Li THS, Kai-Shiuan S, Chan-Hong C, Chi-Hua L (2009) The design of internal type-2 fuzzy kinematic control and interval type-2 fuzzy terminal sliding-mode dynamic control of the wheeled mobile robot. In: IEEE International Conference on Systems, Man and Cybernetics, 2009. SMC 2009, 11–14 Oct. 2009, pp 1045–1050. doi:10.1109/ICSMC.2009.5346009

  119. Hsiao M-Y, Chen C-Y, Tsai S-H, Liu S-T (2009) Combined interval type-2 fuzzy kinematic and dynamic controls of the wheeled mobile robot with adaptive sliding-mode technique. In: IEEE International Conference on Fuzzy Systems, 2009. FUZZ-IEEE 2009. IEEE, pp 706–711

  120. Guo NR, Kuo C-L, Lin MH, Tsai TJ To solve lorenz system by sliding mode controller based on interval type-2 fuzzy logic. In: Second International Symposium on Knowledge Acquisition and Modeling, 2009. KAM’09. IEEE, pp 27–30

  121. Hsiao M-Y, Li T-HS, Lee J-Z, Chao C-H, Tsai S-H (2008) Design of interval type-2 fuzzy sliding-mode controller. Inf Sci 178(6):1696–1716

    MathSciNet  MATH  Google Scholar 

  122. Lin P-Z, Lin C-M, Hsu C-F, Lee T-T (2005) Type-2 fuzzy controller design using a sliding-mode approach for application to DC–DC converters. IEE Proc Electr Power Appl 152(6):1482–1488

    Google Scholar 

  123. Wang J, Rad AB, Chan P (2001) Indirect adaptive fuzzy sliding mode control: part I: fuzzy switching. Fuzzy Sets Syst 122(1):21–30

    MATH  Google Scholar 

  124. Li TS, Hsiao M-Y, Lee J-Z, Tsai S-H (2008) Interval type 2 fuzzy sliding-mode control of a unified chaotic system. In: Journal of Physics: Conference Series, 2008, vol 1. IOP Publishing, p 012086

  125. Zeghlache S, Kara K, Saigaa D (2015) Fault tolerant control based on interval type-2 fuzzy sliding mode controller for coaxial trirotor aircraft. ISA Trans 59:215–231. doi:10.1016/j.isatra.2015.09.006

    Google Scholar 

  126. Mohammadzadeh A, Ghaemi S (2016) A modified sliding mode approach for synchronization of fractional-order chaotic/hyperchaotic systems by using new self-structuring hierarchical type-2 fuzzy neural network. Neurocomputing 191:200–213. doi:10.1016/j.neucom.2015.12.098

    Google Scholar 

  127. Hsu C-F, Lee T-T, Tanaka K (2015) Intelligent nonsingular terminal sliding-mode control via perturbed fuzzy neural network. Eng Appl Artif Intell 45:339–349

    Google Scholar 

  128. Abbadi A, Hamidia F, Nezli L, Boukhetala D (2015) Decoupled sliding mode with type 2 fuzzy-neural network controller for multi-machine power systems. In: 2015 3rd International Conference on Control, Engineering & Information Technology (CEIT). IEEE, pp 1–6

  129. Abbadi A, Nezli L, Boukhetala D (2013) Decoupled adaptive interval type 2 fuzzy sliding mode controller for power systems. In: 2013 3rd International Conference on Systems and Control (ICSC). IEEE, pp 427–32

  130. Amar R, Mustapha H, Mohamed T (2012) Decentralized RBFNN type-2 fuzzy sliding mode controller for robot manipulator driven by artificial muscles. Int J Adv Robot Syst 9:182

    Google Scholar 

  131. Kayacan E, Cigdem O, Kaynak O (2012) Sliding mode control approach for online learning as applied to type-2 fuzzy neural networks and its experimental evaluation. IEEE Trans Ind Electron 59(9):3510–3520

    Google Scholar 

  132. Kayacan E, Kaynak O (2012) Sliding mode control theory-based algorithm for online learning in type-2 fuzzy neural networks: application to velocity control of an electro hydraulic servo system. Int J Adapt Control 26(7):645–659. doi:10.1002/acs.1292

    MathSciNet  MATH  Google Scholar 

  133. Chan C-K, Tsai C-C (2012) Intelligent backstepping sliding-mode control using recurrent interval type 2 fuzzy neural networks for a ball-riding robot. In: 2012 International Conference on Fuzzy Theory and it’s Applications (iFUZZY). IEEE, pp 169–174

  134. Ahmed S, Shakev N, Topalov A, Shiev K, Kaynak O (2012) Sliding mode incremental learning algorithm for interval type-2 Takagi–Sugeno–Kang fuzzy neural networks. Evol Syst 3(3):179–188

    Google Scholar 

  135. Lin T-C, Chen M-C, Roopaei M (2010) Stable direct adaptive interval type-2 fuzzy sliding mode control for synchronization of uncertain chaotic systems. In: 2010 the 5th IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE, pp 1270–1275

  136. Lin T-C, Chen M-C, Roopaei M (2011) Synchronization of uncertain chaotic systems based on adaptive type-2 fuzzy sliding mode control. Eng Appl Artif Intell 24(1):39–49

    Google Scholar 

  137. Lin T-C, Chen M-C (2011) Adaptive hybrid type-2 intelligent sliding mode control for uncertain nonlinear multivariable dynamical systems. Fuzzy Sets Syst 171(1):44–71

    MathSciNet  MATH  Google Scholar 

  138. Cigdem O, Kayacan E, Kaynak O (2011) Experimental study of an interval type-2 fuzzy neural network using sliding-mode online learning algorithm. In: Control Conference (ASCC), 2011 8th Asian, 2011. IEEE, pp 1181–1186

  139. Lin T-C (2010) Based on interval type-2 fuzzy-neural network direct adaptive sliding mode control for SISO nonlinear systems. Commun Nonlinear Sci 15(12):4084–4099

    MathSciNet  MATH  Google Scholar 

  140. Khoramdel Azad AZ, Khanesar MA, Teshnehlab M (2013) Type-2 Fuzzy neural networks for sliding mode Fuzzy control of nonlinear dynamical systems with adaptive learning rate. In: 2013 3rd IEEE International Conference on Computer, Control and Communication, IC4 2013. doi:10.1109/IC4.2013.6653773

  141. Lin TC, Balas VE, Lee TY (2011) Synchronization of uncertain fractional order chaotic systems via adaptive interval type-2 fuzzy sliding mode control. In: IEEE International Conference on Fuzzy Systems, 2011. pp 2882–2889. doi:10.1109/FUZZY.2011.6007354

  142. Shiev KB, Shakev NG, Topalov AV, Ahmed S, Kaynak O (2011) An extended sliding mode learning algorithm for type-2 fuzzy neural networks. In: ICAIS, 2011. Springer, pp 52–63

  143. Topalov AV, Kaynak O, Shakev N, Hong SK (2008) Sliding mode algorithm for on-line learning in fuzzy rule-based neural networks. In: 17 th IFAC World Congress, Seoul, Korea, 2008. pp 12793–12798

  144. Lin T-C (2010) Stable indirect adaptive type-2 fuzzy sliding mode control using Lyapunov approach. Int J Innov Comput 6:12

    Google Scholar 

  145. Ghaemi M, Akbarzadeh-T M-R, Jalaeian-F M (2012) Adaptive interval type-2 fuzzy PI sliding mode control with optimization of membership functions using genetic algorithm. In: 2012 2nd International eConference on Computer and Knowledge Engineering (ICCKE). IEEE, pp 123–128

  146. Ghaemi M, Akbarzadeh-T M-R, Jalaeian-F M (2011) Optimal design of adaptive interval type-2 fuzzy sliding mode control using genetic algorithm. In: 2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA). IEEE, pp 626–631

  147. Shahsadeghi M, Khooban MH, Niknam T (2014) A robust and simple optimal type II fuzzy sliding mode control strategy for a class of nonlinear chaotic systems. J Intell Fuzzy Syst Appl Eng Technol 27(4):1849–1859

    MathSciNet  MATH  Google Scholar 

  148. Niknam T, Khooban MH, Kavousifard A, Soltanpour MR (2014) An optimal type II fuzzy sliding mode control design for a class of nonlinear systems. Nonlinear Dyn 75(1–2):73–83

    MathSciNet  Google Scholar 

  149. Topalov AV, Oniz Y, Kayacan E, Kaynak O (2011) Neuro-fuzzy control of antilock braking system using sliding mode incremental learning algorithm. Neurocomputing 74(11):1883–1893

    Google Scholar 

  150. Sanchez MA, Castillo O, Castro JR (2015) Generalized type-2 fuzzy systems for controlling a mobile robot and a performance comparison with interval type-2 and type-1 fuzzy systems. Exp Syst Appl 42(14):5904–5914

    Google Scholar 

  151. Amador–Angulo L, Castillo O, Castro JR (2016) A generalized type-2 fuzzy logic system for the dynamic adaptation the parameters in a bee colony optimization algorithm applied in an autonomous mobile robot control. Paper presented at the 2016 IEEE International Conference on Systems (FUZZ-IEEE), July 2016

  152. Chiroma H, Shuib NLM, Muaz SA, Abubakar AI, Ila LB, Maitama JZ (2015) A review of the applications of bio-inspired flower pollination algorithm. Proc Comput Sci 62:435–441

    Google Scholar 

  153. Civicioglu P, Besdok E (2013) A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artif Intell Rev 39(4):315–346

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge University of Malaya’s financial support of this project under Postgraduate Research Grant (PPP, Grant No. PG059-2015A) and Research University Grant (RU, Grant No. RU016-2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukhtar Fatihu Hamza.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamza, M.F., Yap, H.J., Choudhury, I.A. et al. A survey on advancement of hybrid type 2 fuzzy sliding mode control. Neural Comput & Applic 30, 331–353 (2018). https://doi.org/10.1007/s00521-017-3144-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3144-z

Keywords

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载