+
Skip to main content
Log in

Fast Algorithms for Minimum Homology Basis

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We study the problem of finding a minimum homology basis, that is, a lightest set of cycles that generates the 1-dimensional homology classes with \(\mathbb {Z}_2\) coefficients in a given simplicial complex K. This problem has been extensively studied in the last few years. For general complexes, the current best deterministic algorithm, by Dey et al. (LATIN 2018: Theoretical Informatics, Springer International Publishing, Cham, 2018), runs in \(O(N m^{\omega -1} + n m g)\) time, where N denotes the total number of simplices in K, m denotes the number of edges in K, n denotes the number of vertices in K, g denotes the rank of the 1-homology group of K, and \(\omega \) denotes the exponent of matrix multiplication. In this paper, we present three conceptually simple randomized algorithms that compute a minimum homology basis of a general simplicial complex K. The first algorithm runs in \(\tilde{O}(m^\omega )\) time, the second algorithm runs in \(O(N m^{\omega -1})\) time and the third algorithm runs in \(\tilde{O}(N^2\,g + N m g{^2} + m g{^3})\) time which is nearly quadratic time when \(g=O(1)\). We also study the problem of finding a minimum cycle basis in an undirected graph G with n vertices and m edges. The best known algorithm for this problem runs in \(O(m^\omega )\) time. Our algorithm, which has a simpler high-level description, but is slightly more expensive, runs in \(\tilde{O}(m^\omega )\) time. We also provide a practical implementation of computing the minimum homology basis for general weighted complexes. The implementation is broadly based on the algorithmic ideas described in this paper, differing in its use of practical subroutines. Of these subroutines, the more costly step makes use of a parallel implementation, thus potentially addressing the issue of scale. We compare results against the currently known state of the art implementation (ShortLoop).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Fig. 1
Algorithm 3
Algorithm 4
Algorithm 5
Algorithm 6
Algorithm 7
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. https://bitbucket.org/vgl_iisc/fastloop/.

References

  1. (2024) OFF format. http://www.geomview.org/docs/html/OFF.html. Accessed 14 May 2024

  2. Amaldi, E., Iuliano, C., Jurkiewicz, T., et al.: Breaking the \({O}(m^2n)\) barrier for minimum cycle bases. In: Fiat, A., Sanders, P. (eds.) Algorithms—ESA 2009, pp. 301–312. Springer, Berlin (2009)

    Chapter  Google Scholar 

  3. Bauer, U., Kerber, M., Reininghaus, J., et al.: PHAT—persistent homology algorithms toolbox. J. Symb. Comput. 78, 76–90 (2017). https://doi.org/10.1016/j.jsc.2016.03.008

    Article  MathSciNet  Google Scholar 

  4. Bauer, U., Kerber, M., Reininghaus, J.: Persistent homology algorithm toolbox. https://github.com/blazs/phat. Accessed 14 May 2024 (2024)

  5. Boost (2023) Boost library. https://boost.org. Accessed 18 April 2023

  6. Borradaile, G., Chambers, E.W., Fox, K., et al.: Minimum cycle and homology bases of surface-embedded graphs. JoCG 8(2), 58–79 (2017)

    MathSciNet  Google Scholar 

  7. Busaryev, O., Cabello, S., Chen, C., et al.: Annotating simplices with a homology basis and its applications. In: Fomin, F.V., Kaski, P. (eds.) Algorithm Theory—SWAT 2012, pp. 189–200. Springer, Berlin (2012)

    Chapter  Google Scholar 

  8. Chen, C., Freedman, D.: Measuring and computing natural generators for homology groups. Comput. Geom. Theory Appl. 43(2), 169–181 (2010). https://doi.org/10.1016/j.comgeo.2009.06.004

    Article  MathSciNet  Google Scholar 

  9. Chen, C., Freedman, D.: Hardness results for homology localization. Discret. Comput. Geom. 45(3), 425–448 (2011). https://doi.org/10.1007/s00454-010-9322-8

    Article  MathSciNet  Google Scholar 

  10. Cheung, H.Y., Kwok, T.C., Lau, L.C.: Fast matrix rank algorithms and applications. J. ACM 60(5), 1–25 (2013). https://doi.org/10.1145/2528404

    Article  MathSciNet  Google Scholar 

  11. de Pina, J.C.: Applications of shortest path methods. PhD thesis, Universiteit van Amsterdam (1995)

  12. Deem, M.: Michael Deem’s PCOD and PCOD2 databases of zeolitic structures. https://doi.org/10.5281/zenodo.4030232 (2020)

  13. Dey, T.K., Sun, J., Wang, Y.: Approximating loops in a shortest homology basis from point data. In: Proc. Twenty-Sixth Annual Symposium on Computational Geometry. Association for Computing Machinery, New York, NY, USA, SoCG ’10, pp. 166–175 (2010). https://doi.org/10.1145/1810959.1810989

  14. Dey, T.K., Li, T., Wang, Y.: Efficient algorithms for computing a minimal homology basis. In: Bender, M.A., Farach-Colton, M., Mosteiro, M.A. (eds.) LATIN 2018: Theoretical Informatics, pp. 376–398. Springer, Cham (2018)

    Chapter  Google Scholar 

  15. Dimitrios, M.: Parallel minimum cycle basis library. https://github.com/d-michail/parmcb. Accessed 14 May 2024 (2024)

  16. Dumas, J.G., Pernet, C., Sultan, Z.: Simultaneous computation of the row and column rank profiles. In: Proc. 38th International Symposium on Symbolic and Algebraic Computation. ACM, New York, NY, USA, ISSAC ’13, pp. 181–188 (2013). https://doi.org/10.1145/2465506.2465517

  17. Erickson, J., Whittlesey, K.: Greedy optimal homotopy and homology generators. In: Proc. Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, SODA ’05, pp. 1038–1046 (2005)

  18. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  19. Horton, J.D.: A polynomial-time algorithm to find the shortest cycle basis of a graph. SIAM J. Comput. 16(2), 358–366 (1987). https://doi.org/10.1137/0216026

    Article  MathSciNet  Google Scholar 

  20. Jeannerod, C.P., Pernet, C., Storjohann, A.: Rank-profile revealing gaussian elimination and the cup matrix decomposition. J. Symb. Comput. 56, 46–68 (2013). https://doi.org/10.1016/j.jsc.2013.04.004

    Article  MathSciNet  Google Scholar 

  21. Kavitha, T., Mehlhorn, K., Michail, D., et al.: A faster algorithm for minimum cycle basis of graphs. In: Díaz, J., Karhumäki, J., Lepistö, A., et al. (eds.) Automata, Languages and Programming, pp. 846–857. Springer, Berlin (2004)

    Chapter  Google Scholar 

  22. Kavitha, T., Liebchen, C., Mehlhorn, K., et al.: Cycle bases in graphs characterization, algorithms, complexity, and applications. Comput. Sci. Rev. 3(4), 199–243 (2009). https://doi.org/10.1016/j.cosrev.2009.08.001

    Article  Google Scholar 

  23. Kavitha, T., Mehlhorn, K., Michail, D.: New approximation algorithms for minimum cycle bases of graphs. Algorithmica 59(4), 471–488 (2011). https://doi.org/10.1007/s00453-009-9313-4

    Article  MathSciNet  Google Scholar 

  24. Martin, R.L., Smit, B., Haranczyk, M.: Addressing challenges of identifying geometrically diverse sets of crystalline porous materials. J. Chem. Inf. Model. 52(2), 308–318 (2012). https://doi.org/10.1021/ci200386x

    Article  Google Scholar 

  25. Mehlhorn, K., Michail, D.: Minimum cycle bases: faster and simpler. ACM Trans. Algorithms 6(1), 1–13 (2009). https://doi.org/10.1145/1644015.1644023

    Article  MathSciNet  Google Scholar 

  26. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  27. Oleksiy, B., Tamal, D.K., Jian, S., et al.: Shortloop software for computing loops in a shortest homology basis (2024). https://web.cse.ohio-state.edu/~dey.8/shortloop.html. Accessed 14 May 2024

  28. Rathod, A.: Fast algorithms for minimum cycle basis and minimum homology basis. In: Proc. International Symposium on Com putational Geometry (SoCG 2020), pp. 1–11 (2020)

  29. Storjohann, A., Yang, S.: Linear independence oracles and applications to rectangular and low rank linear systems. In: Proc. 39th International Symposium on Symbolic and Algebraic Computation. ACM, New York, NY, USA, ISSAC ’14, pp. 381–388 (2014). https://doi.org/10.1145/2608628.2608673

  30. Storjohann, A., Yang, S.: A relaxed algorithm for online matrix inversion. In: Proc. 2015 ACM on International Symposium on Symbolic and Algebraic Computation. ACM, New York, NY, USA, ISSAC ’15, pp. 339–346 (2015). https://doi.org/10.1145/2755996.2756672

  31. Visionair (2024) http://visionair.ge.imati.cnr.it/. Accessed 14 May 2024

  32. Wiedemann, D.: Solving sparse linear equations over finite fields. IEEE Trans. Inf. Theory 32(1), 54–62 (1986). https://doi.org/10.1109/TIT.1986.1057137

    Article  MathSciNet  Google Scholar 

  33. Yang, S.: Algorithms for fast linear system solving and rank profile computation. Master’s thesis, University of Waterloo (2014)

Download references

Acknowledgements

This work is partially supported by the PMRF, MoE Govt. of India, a DFG Project SFB/TRR 109 “Discretization in Geometry and Dynamics”, an NSF Grant CCF 2049010, and a SERB Grant CRG/2021/005278. VN acknowledges support from the Alexander von Humboldt Foundation, and Berlin MATH+ under the Visiting Scholar program. Part of this work was completed when VN was a guest Professor at the Zuse Institute Berlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amritendu Dhar.

Additional information

Editor in Charge: Kenneth Clarkson

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (mp4 9591 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhar, A., Natarajan, V. & Rathod, A. Fast Algorithms for Minimum Homology Basis. Discrete Comput Geom (2024). https://doi.org/10.1007/s00454-024-00680-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00454-024-00680-8

Keywords

Mathematics Subject Classification

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载