+
Skip to main content
Log in

Technical strategy for monozygotic twin discrimination by single-nucleotide variants

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Monozygotic (MZ) twins are theoretically genetically identical. Although they are revealed to accumulate mutations after the zygote splits, discriminating between twin genomes remains a formidable challenge in the field of forensic genetics. Single-nucleotide variants (SNVs) are responsible for a substantial portion of genetic variation, thus potentially serving as promising biomarkers for the identification of MZ twins. In this study, we sequenced the whole genome of a pair of female MZ twins when they were 27 and 33 years old to approximately 30 × coverage using peripheral blood on an Illumina NovaSeq 6000 Sequencing System. Potentially discordant SNVs supported by whole-genome sequencing were validated extensively by amplicon-based targeted deep sequencing and Sanger sequencing. In total, we found nine bona fide post-twinning SNVs, all of which were identified in the younger genomes and found in the older genomes. None of the SNVs occurred within coding exons, three of which were observed in introns, supported by whole-exome sequencing results. A double-blind test was employed, and the reliability of MZ twin discrimination by discordant SNVs was endorsed. All SNVs were successfully detected when input DNA amounts decreased to 0.25 ng, and reliable detection was limited to seven SNVs below 0.075 ng input. This comprehensive analysis confirms that SNVs could serve as cost-effective biomarkers for MZ twin discrimination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. McNamara HC, Kane SC, Craig JM, Short RV, Umstad MP (2016) A review of the mechanisms and evidence for typical and atypical twinning. Am J Obstet Gynecol 214(2):172–191

    Article  PubMed  Google Scholar 

  2. Wilson EE (2005) Assisted reproductive technologies and multiple gestations. Clin Perinatol 32(2):315–328

    Article  PubMed  Google Scholar 

  3. Milki AA, Jun SH, Hinckley MD, Behr B, Giudice LC, Westphal LM (2003) Incidence of monozygotic twinning with blastocyst transfer compared to cleavage-stage transfer. Fertil Steril 79(3):503–506

    Article  PubMed  Google Scholar 

  4. Ottesen NM, Meluken I, Frikke-Schmidt R, Plomgaard P, Scheike T, Fernandes BS et al (2020) Are remitted affective disorders and familial risk of affective disorders associated with metabolic syndrome, inflammation and oxidative stress? — a monozygotic twin study. Psychol Med 50(10):1736–1745

    Article  PubMed  Google Scholar 

  5. Alisch RS, Van Hulle C, Chopra P, Bhattacharyya A, Zhang SC, Davidson RJ et al (2017) A multi-dimensional characterization of anxiety in monozygotic twin pairs reveals susceptibility loci in humans. Transl Psychiatry 7(12):1282

    Article  PubMed  PubMed Central  Google Scholar 

  6. Svendsen AJ, Gervin K, Lyle R, Christiansen L, Kyvik K, Junker P et al (2016) Differentially methylated DNA regions in monozygotic twin pairs discordant for rheumatoid arthritis: an epigenome-wide study. Front Immunol 7:510

    Article  PubMed  PubMed Central  Google Scholar 

  7. Roos L, van Dongen J, Bell CG, Burri A, Deloukas P, Boomsma DI et al (2016) Integrative DNA methylome analysis of pan-cancer biomarkers in cancer discordant monozygotic twin-pairs. Clin Epigenetics 8(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  8. Egawa J, Watanabe Y, Sugimoto A, Nunokawa A, Shibuya M, Igeta H et al (2015) Whole-exome sequencing in a family with a monozygotic twin pair concordant for autism spectrum disorder and a follow-up study. Psychiatry Res 229(1–2):599–601

    Article  CAS  PubMed  Google Scholar 

  9. Machin G (2009) Non-identical monozygotic twins, intermediate twin types, zygosity testing, and the non-random nature of monozygotic twinning: a review. Am J Med Genet C Semin Med Genet 151(2):110–127

    Article  Google Scholar 

  10. Czyz W, Morahan JM, Ebers GC, Ramagopalan SV (2012) Genetic, environmental and stochastic factors in monozygotic twin discordance with a focus on epigenetic differences. BMC Med 10:93

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kato T, Iwamoto K, Kakiuchi C, Kuratomi G, Okazaki Y (2005) Genetic or epigenetic difference causing discordance between monozygotic twins as a clue to molecular basis of mental disorders. Mol Psychiatry 10(7):622–630

    Article  CAS  PubMed  Google Scholar 

  12. Schildberg FA, Hagmann CA, Böhnert V, Tolba RH (2010) Improved transplantation outcome by epigenetic changes. Transpl Immunol 23(3):104–110

    Article  PubMed  Google Scholar 

  13. van Dongen J, Gordon SD, McRae AF, Odintsova VV, Mbarek H, Breeze CE et al (2021) Identical twins carry a persistent epigenetic signature of early genome programming. Nat Commun 12(1):5618

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kaminsky ZA, Tang T, Wang S-C, Ptak C, Oh GHT, Wong AHC et al (2009) DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet 41(2):240–245

    Article  CAS  PubMed  Google Scholar 

  15. Gervin K, Hammerø M, Akselsen HE, Moe R, Nygård H, Brandt I et al (2011) Extensive variation and low heritability of DNA methylation identified in a twin study. Genome Res 21(11):1813–1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vidaki A, DíezLópez C, Carnero-Montoro E, Ralf A, Ward K, Spector T et al (2017) Epigenetic discrimination of identical twins from blood under the forensic scenario. Forensic Sci Int Genet 31:67–80

    Article  CAS  PubMed  Google Scholar 

  17. Marqueta-Gracia JJ, Álvarez-Álvarez M, Baeta M, Palencia-Madrid L, Prieto-Fernández E, Ordoñana JR et al (2018) Differentially methylated CpG regions analyzed by PCR-high resolution melting for monozygotic twin pair discrimination. Forensic Sci Int Genet 37:e1–e5

    Article  CAS  PubMed  Google Scholar 

  18. Turrina S, Bortoletto E, Giannini G, De Leo D (2021) Monozygotic twins: identical or distinguishable for science and law? Med Sci Law 61(1_suppl):62–66

    Article  PubMed  Google Scholar 

  19. Li C, Zhang S, Que T, Li L, Zhao S (2011) Identical but not the same: the value of DNA methylation profiling in forensic discrimination within monozygotic twins. Forensic Sci Int: Genet Suppl Ser 3(1):e337–e338

    Google Scholar 

  20. Wong CC, Caspi A, Williams B, Craig IW, Houts R, Ambler A et al (2010) A longitudinal study of epigenetic variation in twins. Epigenetics 5(6):516–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kandaswamy R, Hannon E, Arseneault L, Mansell G, Sugden K, Williams B et al (2021) DNA methylation signatures of adolescent victimization: analysis of a longitudinal monozygotic twin sample. Epigenetics 16(11):1169–1186

    Article  PubMed  Google Scholar 

  22. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 102(30):10604–10609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Martino D, Loke YJ, Gordon L, Ollikainen M, Cruickshank MN, Saffery R et al (2013) Longitudinal, genome-scale analysis of DNA methylation in twins from birth to 18 months of age reveals rapid epigenetic change in early life and pair-specific effects of discordance. Genome Biol 14(5):R42

    Article  PubMed  PubMed Central  Google Scholar 

  24. Slieker RC, van Iterson M, Luijk R, Beekman M, Zhernakova DV, Moed MH et al (2016) Age-related accrual of methylomic variability is linked to fundamental ageing mechanisms. Genome Biol 17(1):191

    Article  PubMed  PubMed Central  Google Scholar 

  25. Saffery R, Morley R, Carlin JB, Joo J-HE, Ollikainen M, Novakovic B et al (2012) Cohort profile: the peri/post-natal epigenetic twins study. Int J Epidemiol 41(1):55–61

    Article  PubMed  Google Scholar 

  26. Itsara A, Wu H, Smith JD, Nickerson DA, Romieu I, London SJ et al (2010) De novo rates and selection of large copy number variation. Genome Res 20(11):1469–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bruder CE, Piotrowski A, Gijsbers AA, Andersson R, Erickson S, Diaz de Ståhl T et al (2008) Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles. Am J Hum Genet 82(3):763–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ehli EA, Abdellaoui A, Hu Y, Hottenga JJ, Kattenberg M, van Beijsterveldt T et al (2012) De novo and inherited CNVs in MZ twin pairs selected for discordance and concordance on Attention Problems. Eur J Hum Genet 20(10):1037–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Abdellaoui A, Ehli EA, Hottenga J-J, Weber Z, Mbarek H, Willemsen G et al (2015) CNV Concordance in 1,097 MZ twin pairs. Twin Res Hum Genet 18(1):1–12

    Article  PubMed  Google Scholar 

  30. McRae AF, Visscher PM, Montgomery GW, Martin NG (2015) Large autosomal copy-number differences within unselected monozygotic twin pairs are rare. Twin Res Hum Genet 18(1):13–18

    Article  PubMed  Google Scholar 

  31. Lasa A, Ramón y Cajal T, Llort G, Suela J, Cigudosa JC, Cornet M et al (2010) Copy number variations are not modifiers of phenotypic expression in a pair of identical twins carrying a BRCA1 mutation. Breast Cancer Res Treat 123(3):901–905

  32. Ono S, Imamura A, Tasaki S, Kurotaki N, Ozawa H, Yoshiura K et al (2010) Failure to confirm CNVs as of aetiological significance in twin pairs discordant for schizophrenia. Twin Res Hum Genet 13(5):455–460

    Article  PubMed  Google Scholar 

  33. Veenma D, Brosens E, de Jong E, van de Ven C, Meeussen C, Cohen-Overbeek T et al (2012) Copy number detection in discordant monozygotic twins of congenital diaphragmatic hernia (CDH) and esophageal atresia (EA) cohorts. Eur J Hum Genet 20(3):298–304

    Article  CAS  PubMed  Google Scholar 

  34. Wang Z, Zhu R, Zhang S, Bian Y, Lu D, Li C (2015) Differentiating between monozygotic twins through next-generation mitochondrial genome sequencing. Anal Biochem 490:1–6

    Article  CAS  PubMed  Google Scholar 

  35. Yuan L, Chen X, Liu Z, Liu Q, Song A, Bao G et al (2020) Identification of the perpetrator among identical twins using next-generation sequencing technology: a case report. Forensic Sci Int Genet 44:102167

    Article  CAS  PubMed  Google Scholar 

  36. Chen L, Wang J, Tan L, Lu C, Fu G, Fu L et al (2020) Highly accurate mtGenome haplotypes from long-read SMRT sequencing can distinguish between monozygotic twins. Forensic Sci Int Genet 47:102306

    Article  CAS  PubMed  Google Scholar 

  37. Weber-Lehmann J, Schilling E, Gradl G, Richter DC, Wiehler J, Rolf B (2014) Finding the needle in the haystack: Differentiating “identical” twins in paternity testing and forensics by ultra-deep next generation sequencing. Forensic Sci Int Genet 9:42–46

    Article  CAS  PubMed  Google Scholar 

  38. Wang L-F, Yang Y, Zhang X-N, Quan X-L, Wu Y-M (2015) Tri-allelic pattern of short tandem repeats identifies the murderer among identical twins and suggests an embryonic mutational origin. Forensic Sci Int Genet 16:239–245

    Article  CAS  PubMed  Google Scholar 

  39. Andrews S (2010) FastQC a quality control tool for high throughput sequence data. Babraham Bioinformatics, Babraham Institute, Cambridge, United Kingdom

  40. Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:Genomics

  41. Institute B (2019) Picard toolkit. Broad Institute, GitHub repository. https://broadinstitute.github.io/picard/

  42. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. do Valle ÍF, Giampieri E, Simonetti G, Padella A, Manfrini M, Ferrari A et al (2016) Optimized pipeline of MuTect and GATK tools to improve the detection of somatic single nucleotide polymorphisms in whole-exome sequencing data. BMC Bioinform 17(12):341

  44. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17):i884–i890

    Article  PubMed  PubMed Central  Google Scholar 

  46. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO et al (2021) Twelve years of SAMtools and BCFtools. GigaScience 10(2):giab008

  47. Ye K, Beekman M, Lameijer E-W, Zhang Y, Moed MH, van den Akker EB et al (2013) Aging as accelerated accumulation of somatic variants: whole-genome sequencing of centenarian and middle-aged monozygotic twin pairs. Twin Res Hum Genet 16(6):1026–1032

    Article  PubMed  Google Scholar 

  48. von Wurmb-Schwark N, Schwark T, Christiansen L, Lorenz D, Oehmichen M (2004) The use of different multiplex PCRs for twin zygosity determination and its application in forensic trace analysis. Leg Med 6(2):125–130

    Article  Google Scholar 

  49. Altmüller J, Budde BS, Nürnberg P (2014) Enrichment of target sequences for next-generation sequencing applications in research and diagnostics. Biol Chem 395(2):231–237

    Article  PubMed  Google Scholar 

  50. Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A et al (2010) Target-enrichment strategies for next-generation sequencing. Nat Methods 7(2):111–118

    Article  CAS  PubMed  Google Scholar 

  51. Sahdev S, Saini S, Tiwari P, Saxena S, Saini KS (2007) Amplification of GC-rich genes by following a combination strategy of primer design, enhancers and modified PCR cycle conditions. Mol Cell Probes 21(4):303–307

  52. Frey UH, Bachmann HS, Peters J, Siffert W (2008) PCR-amplification of GC-rich regions: ‘slowdown PCR.’ Nat Protoc 3(8):1312–1317

    Article  CAS  PubMed  Google Scholar 

  53. Shinoda N, Yoshida T, Kusama T, Takagi M, Hayakawa T, Onodera T et al (2009) High GC contents of primer 5′-end increases reaction efficiency in polymerase chain reaction. Nucleosides Nucleotides Nucleic Acids 28(4):324–330

    Article  CAS  PubMed  Google Scholar 

  54. McNulty SN, Mann PR, Robinson JA, Duncavage EJ, Pfeifer JD (2020) Impact of reducing DNA input on next-generation sequencing library complexity and variant detection. J Mol Diagn 22(5):720–727

    Article  CAS  PubMed  Google Scholar 

  55. Hanssen EN, Lyle R, Egeland T, Gill P (2017) Degradation in forensic trace DNA samples explored by massively parallel sequencing. Forensic Sci Int Genet 27:160–166

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (grant number 81871534) and the Ministry of Finance of China (grant number GY2021G-2).

Author information

Authors and Affiliations

Contributions

Conceptualization, X. L.; methodology, Z. W., S. W., A. H., H. L., L. J., Q. F., D. F., and Q. T.; data curation, X. L., D. H., and W. S.; visualization, W. S.; writing—original draft preparation, W. S. and X. L.; writing—review and editing, W. S. and X. L.; funding acquisition, X. L. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Xiling Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Wang, Z., Wen, S. et al. Technical strategy for monozygotic twin discrimination by single-nucleotide variants. Int J Legal Med 138, 767–779 (2024). https://doi.org/10.1007/s00414-023-03150-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00414-023-03150-7

Keywords

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载