+
Skip to main content
Log in

Identification of alterations in the Jacobian of biochemical reaction networks from steady state covariance data at two conditions

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Model building of biochemical reaction networks typically involves experiments in which changes in the behavior due to natural or experimental perturbations are observed. Computational models of reaction networks are also used in a systems biology approach to study how transitions from a healthy to a diseased state result from changes in genetic or environmental conditions. In this paper we consider the nonlinear inverse problem of inferring information about the Jacobian of a Langevin type network model from covariance data of steady state concentrations associated to two different experimental conditions. Under idealized assumptions on the Langevin fluctuation matrices we prove that relative alterations in the network Jacobian can be uniquely identified when comparing the two data sets. Based on this result and the premise that alteration is locally confined to separable parts due to network modularity we suggest a computational approach using hybrid stochastic-deterministic optimization for the detection of perturbations in the network Jacobian using the sparsity promoting effect of \(\ell _p\)-penalization. Our approach is illustrated by means of published metabolomic and signaling reaction networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Aderem A (2005) Systems biology: its practice and challenges. Cell 121:511–513

    Article  Google Scholar 

  • Aldridge BB, Burke JM, Lauffenburger DA, Sorger PK (2006) Physicochemical modelling of cell signalling pathways. Nat Cell Biol 8:1195–1203

    Article  Google Scholar 

  • Bartels RH, Stewart GW (1972) Solution of the matrix equation \(ax + xb = c\). Commun ACM 15(9):820–826

    Article  Google Scholar 

  • Bruckstein AM, Donoho DL, Elad M (2009) From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev 51(11):34–81

    Article  MATH  MathSciNet  Google Scholar 

  • Butcher EC, Berg EL, Kunkel EJ (2004) Systems biology in drug discovery. Nat Biotechnol 22:1253–1259

    Article  Google Scholar 

  • Chen WW, Niepel M, Sorger PK (2010) Classic and contemporary approaches to modeling biochemical reactions. Genes Develop 24:1861–1875

    Article  Google Scholar 

  • Daubechies I, Defrise M, De-Mol C (2004) An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun Pure Appl Math 57(11):1413–1457

    Article  MATH  MathSciNet  Google Scholar 

  • del Sol A, Balling R, Hood L, Galas D (2010) Diseases as network perturbations. Cell Curr Opin Biotechnol 21:566–571

    Article  Google Scholar 

  • Eissing T, Kuepfer L, Becker C, Block M, Coboeken K, Gaub T, Goerlitz L, Jaeger J, Loosen R, Ludewig B, Meyer M, Niederalt C, Sevestre M, Siegmund HU, Solodenko J, Thelen K, Telle U, Weiss W, Wendl T, Willmann S, Lippert J (2011) A computational systems biology software platform for multiscale modeling and simulation: integrating whole-body physiology, disease biology, and molecular reaction networks. Front Comput Physiol Med 2:4

    Google Scholar 

  • Engl HW, Hanke M, Neubauer A (1996) Regularization of inverse problems. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  • Engl HW, Flamm C, Kügler P, Lu J, Müller S, Schuster P (2009) Inverse problems in systems biology. Inverse Probl 25(12):123014

    Article  Google Scholar 

  • Franklin GF, Powell JD, Emami-Naeini A (2002) Feedback Control of Dynamical Systems. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Golub GH, van Loan CF (1996) Matrix computations. The Johns Hopkins University Press, Baltimore and London

    MATH  Google Scholar 

  • Golub GH, Nash S, Van Loan CF (1979) A Hessenberg-Schur method for the problem \(ax + xb = c\). IEEE Trans Auto Contr 24:909–913

    Article  MATH  Google Scholar 

  • Golub GH, Hansen PC, O’Leary DP (1999) Tikhonov regularization and total least squares. SIAM J Matrix Anal Appl 21(1):185–194

    Article  MATH  MathSciNet  Google Scholar 

  • Grasmair M, Haltmeier M, Scherzer O (2008) Sparse regularization with \(\ell _q\) penalty term. Inverse Probl 24(5):055020

    Article  MathSciNet  Google Scholar 

  • Hammarling SJ (1982) Numerical solution of the stable, non-negative definite Lyapunov equation. IMA J Num Anal 2:303–325

    Article  MATH  MathSciNet  Google Scholar 

  • Hood L, Perlmutter RM (2004) The impact of systems approaches on biological problems in drug discovery. Nat Biotechnol 22(10):1215–1217

    Article  Google Scholar 

  • Hood L, Heath JR, Phelps ME, Lin B (2004) Systems biology and new technologies enable predictive and preventive medicine. Science 306:640–643

    Article  Google Scholar 

  • Iglesias PA, Ingalls BP (eds) (2010) Control theory and systems biology. MIT Press, Cambridge

  • Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) Kegg for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38(suppl 1):D355–D360

    Article  Google Scholar 

  • Kärkkäinen T (1997) An equation error method to recover diffusion from the distributed observation. Inverse Probl 13(4):1033

    Article  MATH  Google Scholar 

  • Keating SM, Bornstein BJ, Finney A, Hucka M (2006) Sbmltoolbox: an sbml toolbox for matlab users. Bioinformatics 22(10):1275–1277

    Article  Google Scholar 

  • Kitano H (2002) Systems biology: a brief overview. Science 295(5560):1662–1664

    Article  Google Scholar 

  • Klipp E, Liebermeister W, Wierling C, Kowald A, Lehrach H, Herwig R (2009) Systems biology: a textbook. Wiley-VCH, Weinheim

    Google Scholar 

  • Koide T, Lee Pang W, Baliga NS (2009) The role of predictive modelling in rationally re-engineering biological systems. Nat Rev Micro 7(4):297–305

    Google Scholar 

  • Kuepfer L, Lippert J, Eissing T (2012) Multiscale mechanistic modeling in pharmaceutical research and development. In: Goryanin II, Goryachev AB (eds) Advances in systems biology, Advances in Experimental Medicine and Biology, vol 736. Springer, New York, pp 543–561

  • Kügler P (2012) Moment fitting for parameter inference in repeatedly and partially observed stochastic biological models. PLoS ONE 7(8):e43001

    Article  Google Scholar 

  • Lai MJ (2010) On sparse solution of underdetermined linear systems. J Concr Appl Math 8:296–327

    MATH  MathSciNet  Google Scholar 

  • Ljung L (1998) System Identification: Theory for the User. Pearson Education, New York

  • Lu S, Pereverzev SV, Tautenhahn U (2009) Regularized total least squares: computational aspects and error bounds. SIAM J Matrix Anal Appl 31(3):918–941

    Article  MathSciNet  Google Scholar 

  • Maslov S, Ispolatov I (2007) Propagation of large concentration changes in reversible protein-binding networks. Proc Natl Acad Sci 104(34):13655–13660

    Google Scholar 

  • Maslov S, Sneppen K, Ispolatov I (2007) Spreading out of perturbations in reversible reaction networks. New J Phys 9(8):273

    Article  Google Scholar 

  • Moutselos K, Kanaris I, Chatziioannou A, Maglogiannis I, Kolisis F (2009) Keggconverter: a tool for the in-silico modelling of metabolic networks of the kegg pathways database. BMC Bioinf 10(1):324

    Article  Google Scholar 

  • Orton RJ, Adriaens ME, Gormand A, Sturm OE, Kolch W, Gilbert DR (2009) Computational modelling of cancerous mutations in the egfr/erk signalling pathway. BMC Syst Biol 3:100

    Google Scholar 

  • Picchini U (2007) SDE toolbox: simulation and estimation of stochastic differential equations with MATLAB. http://sdetoolbox.sourceforge.net

  • Ramlau R, Teschke G (2010) Sparse recovery in inverse problems. In: Fornasier M (ed) Theoretical foundations and numerical methods for sparse recovery, radon series on Computational and Applied Mathematics, vol 9. deGruyter, New York, pp 1–63

  • Scott M (2011) Applied stochastic processes in science and engineering. Free e-book, http://www.math.uwaterloo.ca

  • Slotine JE, Li W (1991) Applied nonlinear control. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Steuer R, Kurths J, Fiehn O, Weckwerth W (2003) Observing and interpreting correlations in metabolomic networks. Bioinformatics 19:1019–1026

    Article  Google Scholar 

  • Steuer R, Gross T, Selbig J, Blasius B (2006) Structural kinetic modeling of metabolic networks. Proc Natl Acad Sci 103(32):11868–11873

    Google Scholar 

  • Sun X, Weckwerth W (2012) Covain: a toolbox for uni- and multivariate statistics, time- series and correlation network analysis and inverse estimation of the differential jacobian from metabolomics covariance data. Metabolomics 306:640–643

    Google Scholar 

  • Szallasi Z, Stelling J, Periwal V (eds) (2006) System modeling in cellular biology: from concepts to nuts and bolts. MIT Press, Cambridge

  • Van Kampen NG (2007) Stochastic processes in physics and chemistry. North Holland, Amsterdam

    Google Scholar 

  • Vershynin R (2012) How close is the sample covariance matrix totheactual covariance matrix? J Theor Probab 25:655–686. doi:10.1007/s10959-010-0338-z

    Article  MATH  MathSciNet  Google Scholar 

  • Wilkinson JD (2012) Stochastic modelling for systems biology, 2nd edn. Chapman & Hall/CRC, London

    MATH  Google Scholar 

  • Wrzodek C, Dräger A, Zell A (2011) Keggtranslator: visualizing and converting the kegg pathway database to various formats. Bioinformatics 27(16):2314–2315

    Article  Google Scholar 

  • Zarzer CA (2009) On Tikhonov regularization with non-convex sparsity constraints. Inverse Probl 25(2):025006

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank Wolfram Weckwerth and Dirk Walther for pointing to the manuscript (Steuer et al. 2003) and for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Kügler.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kügler, P., Yang, W. Identification of alterations in the Jacobian of biochemical reaction networks from steady state covariance data at two conditions. J. Math. Biol. 68, 1757–1783 (2014). https://doi.org/10.1007/s00285-013-0685-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00285-013-0685-3

Mathematics Subject Classification

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载