+
Skip to main content
Log in

Construction of quasi self-dual codes over a commutative non-unital ring of order 4

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

Let I be the commutative non-unital ring of order 4 defined by generators and relations.

$$\begin{aligned} I=\left\langle a,b\mid 2a=2b=0,\,a^{2}=b,\,ab=0\right\rangle . \end{aligned}$$

Alahmadi et al. have classified QSD codes, Type IV codes (QSD codes with even weights) and quasi-Type IV codes (QSD codes with even torsion code) over I up to lengths \(n=6\), and suggested two building-up methods for constructing QSD codes. In this paper, we construct more QSD codes, Type IV codes and quasi-Type IV codes for lengths \(n=7\) and 8, and describe five new variants of the two building-up construction methods. We find that when \(n=8\) there is at least one QSD code with minimun distance 4, which attains the highest minimum distance so far, and we give a generator matrix for the code. We also describe some QSD codes, Type IV codes and quasi-Type IV codes with new weight distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alahmadi, A., Altassan, A., Basaffar, W., Bonnecaze, A., Shoaib, H., Solé, P.: Quasi Type IV codes over a non-unital ring. Appl. Algebra Eng. Commun. Comput. 32, 217–228 (2021)

    Article  MathSciNet  Google Scholar 

  2. Alahmadi, A., Alkathiry, A., Altassan, A., Bonnecaze, A., Shoaib, H., Solé, P.: The build-up construction of quasi self-dual codes over a commutative non-unital ring (2020) https://hal-lirmm.ccsd.cnrs.fr/I2M-2014-/hal-02977595v1

  3. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997)

    Article  MathSciNet  Google Scholar 

  4. Dougherty, S., Gaborit, P., Harada, M., Munemasa, A., Solé, P.: Type IV self-dual codes over rings. IEEE Trans. Inf. Theory 45(7), 2345–2360 (1999)

    Article  MathSciNet  Google Scholar 

  5. Fine, B.: Classification of finite rings of order \(p^{2}\). Math. Mag. 66(4), 248–252 (1993)

    Article  MathSciNet  Google Scholar 

  6. Huffman, W., Pless, V.: Fundamentals of Error Correcting Codes. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  7. Kim, J.-L.: New extremal self-dual codes of lengths 36, 38, and 58. IEEE Trans. Inf. Theory 47(1), 386–393 (2001)

    Article  MathSciNet  Google Scholar 

  8. Kim, J.-L., Lee, Y.: Euclidean and Hermitian self-dual MDS codes over large finite fields. J. Comb. Theory Ser. A 105, 79–95 (2004)

    Article  MathSciNet  Google Scholar 

  9. Kim, J.-L., Lee, Y.: An efficient construction of self-dual codes. Bull. Korean Math. Soc. 52(3), 915–923 (2015)

    Article  MathSciNet  Google Scholar 

  10. Kim, J.-L., Lee, Y.: Construction of MDS self-dual codes over Galois rings. Des. Codes Cryptogr. 45(2), 247–258 (2007)

    Article  MathSciNet  Google Scholar 

  11. Kim, J.-L., Ohk, D.: DNA codes over two noncommutative rings of order four. J. Appl. Math. Comput. (2021) https://doi.org/10.1007/s12190-021-01598-7, arXiv:2102.06981

  12. Pless, V.: Introduction to the Theory of Error-Correcting Codes. John Wiley & Sons Inc, New York (1998)

    Book  Google Scholar 

Download references

Acknowledgements

This research (JLK) is supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2019R1A2C1088676).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Gun Roe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JL., Roe, Y.G. Construction of quasi self-dual codes over a commutative non-unital ring of order 4. AAECC 35, 393–406 (2024). https://doi.org/10.1007/s00200-022-00553-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00200-022-00553-8

Keywords

Mathematics Subject Classification

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载