+
Skip to main content
Log in

Pro-apoptotic and anti-apoptotic regulation mediated by deubiquitinating enzymes

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Although damaged cells can be repaired, cells that are considered unlikely to be repaired are eliminated through apoptosis, a type of predicted cell death found in multicellular organisms. Apoptosis is a structured cell death involving alterations to the cell morphology and internal biochemical changes. This process involves the expansion and cracking of cells, changes in cell membranes, nuclear fragmentation, chromatin condensation, and chromosome cleavage, culminating in the damaged cells being eaten and processed by other cells. The ubiquitin–proteasome system (UPS) is a major cellular pathway that regulates the protein levels through proteasomal degradation. This review proposes that apoptotic proteins are regulated through the UPS and describes a unique direction for cancer treatment by controlling proteasomal degradation of apoptotic proteins, and small molecules targeted to enzymes associated with UPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

As this is a review article, there is no requirement for data availability.

References

  1. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516. https://doi.org/10.1080/01926230701320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Famularo G, De Simone C, Marcellini S (1997) Apoptosis: mechanisms and relation to AIDS. Med Hypotheses 48:423–429. https://doi.org/10.1016/s0306-9877(97)90041-4

    Article  CAS  PubMed  Google Scholar 

  3. Erekat NS (2018) Apoptosis and its role in Parkinson’s disease. In: Stoker TB, Greenland JC (eds) Parkinson’s disease: pathogenesis and clinical aspects. Codon Publications, Brisbane, Australia, pp 65–82. https://doi.org/10.15586/codonpublications.parkinsonsdisease.2018.ch4

    Chapter  Google Scholar 

  4. Ciechanover A (2017) Intracellular protein degradation: From a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Best Pract Res Clin Haematol 30:341–355. https://doi.org/10.1016/j.beha.2017.09.001

    Article  PubMed  Google Scholar 

  5. Deng L, Meng T, Chen L, Wei W, Wang P (2020) The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther 5:11. https://doi.org/10.1038/s41392-020-0107-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tait SW, Green DR (2013) Mitochondrial regulation of cell death. Cold Spring Harb Perspect Biol 5:a008706. https://doi.org/10.1101/cshperspect.a008706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Murphy MP (1999) Nitric oxide and cell death. Biochim Biophys Acta 1411:401–414. https://doi.org/10.1016/s0005-2728(99)00029-8

    Article  CAS  PubMed  Google Scholar 

  8. Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9:402–412. https://doi.org/10.1038/nrm2395

    Article  CAS  PubMed  Google Scholar 

  9. Attardi LD et al (2000) PERP, an apoptosis-associated target of p53, is a novel member of the PMP-22/gas3 family. Genes Dev 14:704–718. https://doi.org/10.1101/GAD.14.6.704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Green DR, Kroemer G (2009) Cytoplasmic functions of the tumour suppressor p53. Nature 458:1127–1130. https://doi.org/10.1038/nature07986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee CL, Blum JM, Kirsch DG (2013) Role of p53 in regulating tissue response to radiation by mechanisms independent of apoptosis. Transl Cancer Res 2:412–421. https://doi.org/10.3978/j.issn.2218-676X.2013.09.01

    Article  CAS  PubMed  Google Scholar 

  12. Chipuk JE, Green DR (2008) How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 18:157–164. https://doi.org/10.1016/j.tcb.2008.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Adrain C, Creagh EM, Martin SJ (2001) Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2. EMBO J 20:6627–6636. https://doi.org/10.1093/emboj/20.23.6627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ceballos-Cancino G, Espinosa M, Maldonado V, Melendez-Zajgla J (2007) Regulation of mitochondrial Smac/DIABLO-selective release by survivin. Oncogene 26:7569–7575. https://doi.org/10.1038/sj.onc.1210560

    Article  CAS  PubMed  Google Scholar 

  15. Wang C, Youle RJ (2009) The role of mitochondria in apoptosis. Annu Rev Genet 43:95–118. https://doi.org/10.1146/annurev-genet-102108-134850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cavalcante GC et al (2019) A cell’s fate: an overview of the molecular biology and genetics of apoptosis. Int J Mol Sci 20:4133. https://doi.org/10.3390/ijms20174133

    Article  CAS  PubMed Central  Google Scholar 

  17. Ashkenazi A (2008) Targeting the extrinsic apoptosis pathway in cancer. Cytokine Growth Factor Rev 19:325–331. https://doi.org/10.1016/j.cytogfr.2008.04.001

    Article  CAS  PubMed  Google Scholar 

  18. Villa-Morales M, Fernandez-Piqueras J (2012) Targeting the Fas/FasL signaling pathway in cancer therapy. Expert Opin Ther Targets 16:85–101. https://doi.org/10.1517/14728222.2011.628937

    Article  CAS  PubMed  Google Scholar 

  19. Li K et al (2021) The involvement of TNF-alpha and TNF-beta as proinflammatory cytokines in lymphocyte-mediated adaptive immunity of Nile tilapia by initiating apoptosis. Dev Comp Immunol 115:103884. https://doi.org/10.1016/j.dci.2020.103884

    Article  CAS  PubMed  Google Scholar 

  20. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308. https://doi.org/10.1126/science.281.5381.1305

    Article  CAS  PubMed  Google Scholar 

  21. Papenfuss K, Cordier SM, Walczak H (2008) Death receptors as targets for anti-cancer therapy. J Cell Mol Med 12:2566–2585. https://doi.org/10.1111/j.1582-4934.2008.00514.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kretz AL et al (2019) TRAILblazing strategies for cancer treatment. Cancers 11:456. https://doi.org/10.3390/cancers11040456

    Article  CAS  PubMed Central  Google Scholar 

  23. Lee EW, Seo J, Jeong M, Lee S, Song J (2012) The roles of FADD in extrinsic apoptosis and necroptosis. BMB Rep 45:496–508. https://doi.org/10.5483/bmbrep.2012.45.9.186

    Article  CAS  PubMed  Google Scholar 

  24. Beaudouin J, Liesche C, Aschenbrenner S, Horner M, Eils R (2013) Caspase-8 cleaves its substrates from the plasma membrane upon CD95-induced apoptosis. Cell Death Differ 20:599–610. https://doi.org/10.1038/cdd.2012.156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lilienbaum A (2013) Relationship between the proteasomal system and autophagy. Int J Biochem Mol Biol 4:1–26

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Flick K, Kaiser P (2012) Protein degradation and the stress response. Semin Cell Dev Biol 23:515–522. https://doi.org/10.1016/j.semcdb.2012.01.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Heideker J, Wertz IE (2015) DUBs, the regulation of cell identity and disease. Biochem J 467:191. https://doi.org/10.1042/bj4670191

    Article  CAS  PubMed  Google Scholar 

  28. Garg AV, Ahmed M, Vallejo AN, Ma A, Gaffen SL (2013) The deubiquitinase A20 mediates feedback inhibition of interleukin-17 receptor signaling. Sci Signal 6:ra44. https://doi.org/10.1126/scisignal.2003699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang Y et al (2015) Deubiquitinating enzymes regulate PARK2-mediated mitophagy. Autophagy 11:595–606. https://doi.org/10.1080/15548627.2015.1034408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Park HB, Kim JW, Baek KH (2020) Regulation of Wnt signaling through ubiquitination and deubiquitination in cancers. Int J Mol Sci 21:3904. https://doi.org/10.3390/ijms21113904

    Article  CAS  PubMed Central  Google Scholar 

  31. He M, Zhou Z, Wu G, Chen Q, Wan Y (2017) Emerging role of DUBs in tumor metastasis and apoptosis: Therapeutic implication. Pharmacol Ther 177:96–107. https://doi.org/10.1016/j.pharmthera.2017.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bader M, Steller H (2009) Regulation of cell death by the ubiquitin-proteasome system. Curr Opin Cell Biol 21:878–884. https://doi.org/10.1016/j.ceb.2009.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun SC (2010) CYLD: a tumor suppressor deubiquitinase regulating NF-kappaB activation and diverse biological processes. Cell Death Differ 17:25–34. https://doi.org/10.1038/cdd.2009.43

    Article  CAS  PubMed  Google Scholar 

  34. Harhaj EW, Dixit VM (2012) Regulation of NF-kappaB by deubiquitinases. Immunol Rev 246:107–124. https://doi.org/10.1111/j.1600-065X.2012.01100.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Saito K et al (2004) The CAP-Gly domain of CYLD associates with the proline-rich sequence in NEMO/IKKgamma. Structure 12:1719–1728. https://doi.org/10.1016/j.str.2004.07.012

    Article  CAS  PubMed  Google Scholar 

  36. Ritorto MS et al (2014) Screening of DUB activity and specificity by MALDI-TOF mass spectrometry. Nat Commun 5:4763. https://doi.org/10.1038/ncomms5763

    Article  CAS  PubMed  Google Scholar 

  37. Komander D et al (2008) The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B box module. Mol Cell 29:451–464. https://doi.org/10.1016/j.molcel.2007.12.018

    Article  CAS  PubMed  Google Scholar 

  38. Komander D et al (2009) Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep 10:466–473. https://doi.org/10.1038/embor.2009.55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sato Y et al (2015) Structures of CYLD USP with Met1- or Lys63-linked diubiquitin reveal mechanisms for dual specificity. Nat Struct Mol Biol 22:222–229. https://doi.org/10.1038/nsmb.2970

    Article  CAS  PubMed  Google Scholar 

  40. Lork M, Verhelst K, Beyaert R (2017) CYLD, A20 and OTULIN deubiquitinases in NF-kappaB signaling and cell death: so similar, yet so different. Cell Death Differ 24:1172–1183. https://doi.org/10.1038/cdd.2017.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ohtake F, Saeki Y, Ishido S, Kanno J, Tanaka K (2016) The K48–K63 branched ubiquitin chain regulates NF-kappaB signaling. Mol Cell 64:251–266. https://doi.org/10.1016/j.molcel.2016.09.014

    Article  CAS  PubMed  Google Scholar 

  42. Brummelkamp TR, Nijman SM, Dirac AM, Bernards R (2003) Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 424:797–801. https://doi.org/10.1038/nature01811

    Article  CAS  PubMed  Google Scholar 

  43. Kovalenko A et al (2003) The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 424:801–805. https://doi.org/10.1038/nature01802

    Article  CAS  PubMed  Google Scholar 

  44. Trompouki E et al (2003) CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 424:793–796. https://doi.org/10.1038/nature01803

    Article  CAS  PubMed  Google Scholar 

  45. Fernandez-Majada V et al (2016) The tumour suppressor CYLD regulates the p53 DNA damage response. Nat Commun 7:12508. https://doi.org/10.1038/ncomms12508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Massoumi R, Chmielarska K, Hennecke K, Pfeifer A, Fassler R (2006) Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-kappaB signaling. Cell 125:665–677. https://doi.org/10.1016/j.cell.2006.03.041

    Article  CAS  PubMed  Google Scholar 

  47. Sparks A et al (2014) The degradation of p53 and its major E3 ligase Mdm2 is differentially dependent on the proteasomal ubiquitin receptor S5a. Oncogene 33:4685–4696. https://doi.org/10.1038/onc.2013.413

    Article  CAS  PubMed  Google Scholar 

  48. Sun XX, Challagundla KB, Dai MS (2012) Positive regulation of p53 stability and activity by the deubiquitinating enzyme Otubain 1. EMBO J 31:576–592. https://doi.org/10.1038/emboj.2011.434

    Article  CAS  PubMed  Google Scholar 

  49. Chen Y, Wang YG, Li Y, Sun XX, Dai MS (2017) Otub1 stabilizes MDMX and promotes its proapoptotic function at the mitochondria. Oncotarget 8:11053–11062. https://doi.org/10.18632/oncotarget.14278

    Article  PubMed  Google Scholar 

  50. Pierdominici M et al (2012) Role of autophagy in immunity and autoimmunity, with a special focus on systemic lupus erythematosus. FASEB J 26:1400–1412. https://doi.org/10.1096/fj.11-194175

    Article  CAS  PubMed  Google Scholar 

  51. Brinkmann K et al (2013) Ubiquitin C-terminal hydrolase-L1 potentiates cancer chemosensitivity by stabilizing NOXA. Cell Rep 3:881–891. https://doi.org/10.1016/j.celrep.2013.02.014

    Article  CAS  PubMed  Google Scholar 

  52. Li L et al (2010) The tumor suppressor UCHL1 forms a complex with p53/MDM2/ARF to promote p53 signaling and is frequently silenced in nasopharyngeal carcinoma. Clin Cancer Res 16:2949–2958. https://doi.org/10.1158/1078-0432.CCR-09-3178

    Article  CAS  PubMed  Google Scholar 

  53. Yu J et al (2008) Epigenetic identification of ubiquitin carboxyl-terminal hydrolase L1 as a functional tumor suppressor and biomarker for hepatocellular carcinoma and other digestive tumors. Hepatology 48:508–518. https://doi.org/10.1002/hep.22343

    Article  CAS  PubMed  Google Scholar 

  54. Mazumdar T et al (2010) Regulation of NF-kappaB activity and inducible nitric oxide synthase by regulatory particle non-ATPase subunit 13 (Rpn13). Proc Natl Acad Sci U S A 107:13854–13859. https://doi.org/10.1073/pnas.0913495107

    Article  PubMed  PubMed Central  Google Scholar 

  55. Fukui S et al (2019) The proteasome deubiquitinase inhibitor bAP15 downregulates TGF-beta/Smad signaling and induces apoptosis via UCHL5 inhibition in ovarian cancer. Oncotarget 10:5932–5948. https://doi.org/10.18632/oncotarget.27219

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wang CL et al (2014) Ubiquitin-specific protease 2a stabilizes MDM4 and facilitates the p53-mediated intrinsic apoptotic pathway in glioblastoma. Carcinogenesis 35:1500–1509. https://doi.org/10.1093/carcin/bgu015

    Article  CAS  PubMed  Google Scholar 

  57. Mahul-Mellier AL et al (2012) De-ubiquitinating proteases USP2a and USP2c cause apoptosis by stabilising RIP1. Biochim Biophys Acta 1823:1353–1365. https://doi.org/10.1016/j.bbamcr.2012.05.022

    Article  CAS  PubMed  Google Scholar 

  58. Mahul-Mellier AL et al (2012) De-ubiquitinating protease USP2a targets RIP1 and TRAF2 to mediate cell death by TNF. Cell Death Differ 19:891–899. https://doi.org/10.1038/cdd.2011.185

    Article  CAS  PubMed  Google Scholar 

  59. Park JK, Das T, Song EJ, Kim EE (2016) Structural basis for recruiting and shuttling of the spliceosomal deubiquitinase USP4 by SART3. Nucleic Acids Res 44:5424–5437. https://doi.org/10.1093/nar/gkw218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Clerici M, Luna-Vargas MP, Faesen AC, Sixma TK (2014) The DUSP-Ubl domain of USP4 enhances its catalytic efficiency by promoting ubiquitin exchange. Nat Commun 5:5399. https://doi.org/10.1038/ncomms6399

    Article  PubMed  Google Scholar 

  61. Hu B et al (2021) Spotlight on USP4: structure, function, and regulation. Front Cell Dev Biol 9: https://doi.org/10.3389/fcell.2021.595159

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hou X, Wang L, Zhang L, Pan X, Zhao W (2013) Ubiquitin-specific protease 4 promotes TNF-alpha-induced apoptosis by deubiquitination of RIP1 in head and neck squamous cell carcinoma. FEBS Lett 587:311–316. https://doi.org/10.1016/j.febslet.2012.12.016

    Article  CAS  PubMed  Google Scholar 

  63. Zhou J et al (2018) USP7: target validation and drug discovery for cancer therapy. Med Chem 14:3–18. https://doi.org/10.2174/1573406413666171020115539

    Article  CAS  PubMed  Google Scholar 

  64. Schauer NJ et al (2020) Selective USP7 inhibition elicits cancer cell killing through a p53-dependent mechanism. Sci Rep 10:5324. https://doi.org/10.1038/s41598-020-62076-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Masuya D et al (2006) The HAUSP gene plays an important role in non-small cell lung carcinogenesis through p53-dependent pathways. J Pathol 208:724–732. https://doi.org/10.1002/path.1931

    Article  CAS  PubMed  Google Scholar 

  66. Becker K, Marchenko ND, Palacios G, Moll UM (2008) A role of HAUSP in tumor suppression in a human colon carcinoma xenograft model. Cell Cycle 7:1205–1213. https://doi.org/10.4161/cc.7.9.5756

    Article  CAS  PubMed  Google Scholar 

  67. Khan OM et al (2018) The deubiquitinase USP9X regulates FBW7 stability and suppresses colorectal cancer. J Clin Invest 128:1326–1337. https://doi.org/10.1172/JCI97325

    Article  PubMed  PubMed Central  Google Scholar 

  68. Perez-Mancera PA et al (2012) The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma. Nature 486:266–270. https://doi.org/10.1038/nature11114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bolomsky A et al (2020) MCL-1 inhibitors, fast-lane development of a new class of anti-cancer agents. J Hematol Oncol 13:173. https://doi.org/10.1186/s13045-020-01007-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schwickart M et al (2010) Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival. Nature 463:103–107. https://doi.org/10.1038/nature08646

    Article  CAS  PubMed  Google Scholar 

  71. Sun J et al (2018) USP10 inhibits lung cancer cell growth and invasion by upregulating PTEN. Mol Cell Biochem 441:1–7. https://doi.org/10.1007/s11010-017-3170-2

    Article  CAS  PubMed  Google Scholar 

  72. Bhattacharya U, Neizer-Ashun F, Mukherjee P, Bhattacharya R (2020) When the chains do not break: the role of USP10 in physiology and pathology. Cell Death Dis 11:1033. https://doi.org/10.1038/s41419-020-03246-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Luo Z et al (2019) A negative feedback regulatory loop between miR-138 and TP53 is mediated by USP10. Oncotarget 10:6288–6296. https://doi.org/10.18632/oncotarget.27275

    Article  PubMed  PubMed Central  Google Scholar 

  74. Olivier M, Hollstein M, Hainaut P (2010) TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2:a001008. https://doi.org/10.1101/cshperspect.a001008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531. https://doi.org/10.1038/nrg1379

    Article  CAS  PubMed  Google Scholar 

  76. Yuan J, Luo K, Zhang L, Cheville JC, Lou Z (2010) USP10 regulates p53 localization and stability by deubiquitinating p53. Cell 140:384–396. https://doi.org/10.1016/j.cell.2009.12.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Boselli M et al (2017) An inhibitor of the proteasomal deubiquitinating enzyme USP14 induces tau elimination in cultured neurons. J Biol Chem 292:19209–19225. https://doi.org/10.1074/jbc.M117.815126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jiang L et al (2019) Proteasomal cysteine deubiquitinase inhibitor b-AP15 suppresses migration and induces apoptosis in diffuse large B cell lymphoma. J Exp Clin Cancer Res 38:453. https://doi.org/10.1186/s13046-019-1446-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang SA, Hung JJ (2015) Ubiquitin-specific protease 24 regulates apoptosis through Deubiquinating Bax and Mediating Ku70 Acetylation. FASEB J 29:569. https://doi.org/10.1096/fasebj.29.1_supplement.569.9

    Article  Google Scholar 

  80. Popov N et al (2007) The ubiquitin-specific protease USP28 is required for MYC stability. Nat Cell Biol 9:765–774. https://doi.org/10.1038/ncb1601

    Article  CAS  PubMed  Google Scholar 

  81. Liu Z, Zhao T et al (2020) Discovery of [1,2,3]triazolo[4,5-d]pyrimidine derivatives as highly potent, selective, and cellularly active USP28 inhibitors. Acta Pharm Sin B 10:1476–1491. https://doi.org/10.1016/j.apsb.2019.12.008

    Article  CAS  PubMed  Google Scholar 

  82. Guo G, Xu Y, Gong M, Cao Y, An R (2014) USP28 is a potential prognostic marker for bladder cancer. Tumour Biol 35:4017–4022. https://doi.org/10.1007/s13277-013-1525-1

    Article  CAS  PubMed  Google Scholar 

  83. Diefenbacher ME et al (2014) The deubiquitinase USP28 controls intestinal homeostasis and promotes colorectal cancer. J Clin Invest 124:3407–3418. https://doi.org/10.1172/JCI73733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang L et al (2015) Overexpression of deubiquitinating enzyme USP28 promoted non-small cell lung cancer growth. J Cell Mol Med 19:799–805. https://doi.org/10.1111/jcmm.12426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Liang JR et al (2015) USP30 deubiquitylates mitochondrial Parkin substrates and restricts apoptotic cell death. EMBO Rep 16:618–627. https://doi.org/10.15252/embr.201439820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rusilowicz-Jones EV et al (2020) USP30 sets a trigger threshold for PINK1-PARKIN amplification of mitochondrial ubiquitylation. Life Sci Alliance 3:e202000768. https://doi.org/10.26508/lsa.202000768

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kluge AF et al (2018) Novel highly selective inhibitors of ubiquitin specific protease 30 (USP30) accelerate mitophagy. Bioorg Med Chem Lett 28:2655–2659. https://doi.org/10.1016/j.bmcl.2018.05.013

    Article  CAS  PubMed  Google Scholar 

  88. Jia M, Guo Y, Lu X (2018) USP33 is a biomarker of disease recurrence in papillary thyroid carcinoma. Cell Physiol Biochem 45:2044–2053. https://doi.org/10.1159/000488041

    Article  CAS  PubMed  Google Scholar 

  89. Lee JC, Peter ME (2003) Regulation of apoptosis by ubiquitination. Immunol Rev 193:39–47. https://doi.org/10.1034/j.1600-065x.2003.00043.x

    Article  CAS  PubMed  Google Scholar 

  90. Verhelst K, van Loo G, Beyaert R (2014) A20: attractive without showing cleavage. EMBO Rep 15:734–735. https://doi.org/10.15252/embr.201439014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wertz IE et al (2004) De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 430:694–699. https://doi.org/10.1038/nature02794

    Article  CAS  PubMed  Google Scholar 

  92. Priem D et al (2019) A20 protects cells from TNF-induced apoptosis through linear ubiquitin-dependent and -independent mechanisms. Cell Death Dis 10:692. https://doi.org/10.1038/s41419-019-1937-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jang EJ et al (2021) FAM188B downregulation sensitizes lung cancer cells to anoikis via EGFR downregulation and inhibits tumor metastasis In vivo. Cancers 13:247. https://doi.org/10.3390/cancers13020247

    Article  CAS  PubMed Central  Google Scholar 

  94. Kotschy A et al (2016) The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature 538:477–482. https://doi.org/10.1038/nature19830

    Article  CAS  PubMed  Google Scholar 

  95. Moujalled DM et al (2019) Combining BH3-mimetics to target both BCL-2 and MCL1 has potent activity in pre-clinical models of acute myeloid leukemia. Leukemia 33:905–917. https://doi.org/10.1038/s41375-018-0261-3

    Article  CAS  PubMed  Google Scholar 

  96. Li Z, He S, Look AT (2019) The MCL1-specific inhibitor S63845 acts synergistically with venetoclax/ABT-199 to induce apoptosis in T-cell acute lymphoblastic leukemia cells. Leukemia 33:262–266. https://doi.org/10.1038/s41375-018-0201-2

    Article  PubMed  Google Scholar 

  97. Wu X, Luo Q et al (2020) JOSD1 inhibits mitochondrial apoptotic signalling to drive acquired chemoresistance in gynaecological cancer by stabilizing MCL1. Cell Death Differ 27:55–70. https://doi.org/10.1038/s41418-019-0339-0

    Article  CAS  PubMed  Google Scholar 

  98. Senichkin VV, Streletskaia AY, Gorbunova AS, Zhivotovsky B, Kopeina GS (2020) Saga of Mcl-1: regulation from transcription to degradation. Cell Death Differ 27:405–419. https://doi.org/10.1038/s41418-019-0486-3

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ni Q, Chen J et al (2017) Expression of OTUB1 in hepatocellular carcinoma and its effects on HCC cell migration and invasion. Acta Biochim Biophys Sin 49:680–688. https://doi.org/10.1093/abbs/gmx056

    Article  CAS  PubMed  Google Scholar 

  100. Xie X, Wang X et al (2017) PPPDE1 is a novel deubiquitinase belonging to a cysteine isopeptidase family. Biochem Biophys Res Commun 488:291–296. https://doi.org/10.1016/j.bbrc.2017.04.161

    Article  CAS  PubMed  Google Scholar 

  101. Xie X, Wang X et al (2019) PPPDE1 promotes hepatocellular carcinoma development by negatively regulate p53 and apoptosis. Apoptosis 24:135–144. https://doi.org/10.1007/s10495-018-1491-6

    Article  CAS  PubMed  Google Scholar 

  102. Tian Z et al (2014) A novel small molecule inhibitor of deubiquitylating enzyme USP14 and UCHL5 induces apoptosis in multiple myeloma and overcomes bortezomib resistance. Blood 123:706–716. https://doi.org/10.1182/blood-2013-05-500033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Liu D, Song Z, Wang X, Ouyang L (2020) Ubiquitin C-Terminal Hydrolase L5 (UCHL5) accelerates the growth of endometrial cancer via activating the Wnt/beta-Catenin signaling pathway. Front Oncol 10:865. https://doi.org/10.3389/fonc.2020.00865

    Article  PubMed  PubMed Central  Google Scholar 

  104. Cui SZ et al (2020) Targeting USP1-dependent KDM4A protein stability as a potential prostate cancer therapy. Cancer Sci 111:1567–1581. https://doi.org/10.1111/cas.14375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lee JK et al (2016) USP1 targeting impedes GBM growth by inhibiting stem cell maintenance and radioresistance. Neuro Oncol 18:37–47. https://doi.org/10.1093/neuonc/nov091

    Article  CAS  PubMed  Google Scholar 

  106. Mistry H et al (2013) Small-molecule inhibitors of USP1 target ID1 degradation in leukemic cells. Mol Cancer Ther 12:2651–2662. https://doi.org/10.1158/1535-7163.MCT-13-0103-T

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kitamura H, Hashimoto M (2021) USP2-related cellular signaling and consequent pathophysiological outcomes. Int J Mol Sci 22:1209. https://doi.org/10.3390/ijms22031209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nida S, Ambe L, Farha I, Shamshad Z, Zehra H (2020) Inhibition of USP2 Induces apoptosis through down regulation of fatty acid synthase and Cyclin D1 in triple negative breast cancer. Curr Proteomics 17:425. https://doi.org/10.2174/157016461766619100809352

    Article  Google Scholar 

  109. Davis MI et al (2016) Small molecule inhibition of the ubiquitin-specific protease USP2 accelerates cyclin D1 degradation and leads to cell cycle arrest in colorectal cancer and mantle cell lymphoma models. J Biol Chem 291:24628–24640. https://doi.org/10.1074/jbc.M116.738567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Qiu C et al (2019) Correction for: Ubiquitin-specific protease 4 promotes metastasis of hepatocellular carcinoma by increasing TGF-beta signaling-induced epithelial-mesenchymal transition. Aging 11:3408–3409 https://doi.org/10.18632/aging.102010

    Article  PubMed  PubMed Central  Google Scholar 

  111. Li T et al (2018) Ubiquitin-specific protease 4 promotes hepatocellular carcinoma progression via cyclophilin A stabilization and deubiquitination. Cell Death Dis 9:148. https://doi.org/10.1038/s41419-017-0182-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Heo MJ et al (2014) microRNA-148a dysregulation discriminates poor prognosis of hepatocellular carcinoma in association with USP4 overexpression. Oncotarget 5:2792–2806. https://doi.org/10.18632/oncotarget.1920

    Article  PubMed  PubMed Central  Google Scholar 

  113. Li F et al (2020) The deubiquitinase USP4 stabilizes Twist1 protein to promote lung cancer cell stemness. Cancers 12:1582. https://doi.org/10.3390/cancers12061582

    Article  CAS  PubMed Central  Google Scholar 

  114. Potu H et al (2014) Usp5 links suppression of p53 and FAS levels in melanoma to the BRAF pathway. Oncotarget 5:5559–5569. https://doi.org/10.18632/oncotarget.2140

    Article  PubMed  PubMed Central  Google Scholar 

  115. Dayal S et al (2009) Suppression of the deubiquitinating enzyme USP5 causes the accumulation of unanchored polyubiquitin and the activation of p53. J Biol Chem 284:5030–5041. https://doi.org/10.1074/jbc.M805871200

    Article  CAS  PubMed  Google Scholar 

  116. Xu X et al (2019) Ubiquitin specific peptidase 5 regulates colorectal cancer cell growth by stabilizing Tu translation elongation factor. Theranostics 9:4208–4220. https://doi.org/10.7150/thno.33803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Liu Y et al (2017) Ubiquitin specific peptidase 5 mediates Histidine-rich protein Hpn induced cell apoptosis in hepatocellular carcinoma through P14–P53 signaling. Proteomics 17:1600350. https://doi.org/10.1002/pmic.201600350

    Article  CAS  Google Scholar 

  118. Meng J et al (2019) USP5 promotes epithelial-mesenchymal transition by stabilizing SLUG in hepatocellular carcinoma. Theranostics 9:573–587. https://doi.org/10.7150/thno.27654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Xue S et al (2020) USP5 promotes metastasis in non-small cell lung cancer by inducing epithelial-mesenchymal transition via Wnt/beta-catenin pathway. Front Pharmacol 11:668. https://doi.org/10.3389/fphar.2020.00668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Liu Y et al (2017) Usp5 functions as an oncogene for stimulating tumorigenesis in hepatocellular carcinoma. Oncotarget 8:50655–50664. https://doi.org/10.18632/oncotarget.16901

    Article  PubMed  PubMed Central  Google Scholar 

  121. Song MS et al (2008) The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network. Nature 455:813–817. https://doi.org/10.1038/nature07290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Su D et al (2018) Ubiquitin-specific protease 7 sustains DNA damage response and promotes cervical carcinogenesis. J Clin Invest 128:4280–4296. https://doi.org/10.1172/JCI120518

    Article  PubMed  PubMed Central  Google Scholar 

  123. Rong Z, Zhu Z, Cai S, Zhang B (2020) Knockdown of USP8 inhibits the growth of lung cancer cells. Cancer Manag Res 12:12415–12422. https://doi.org/10.2147/IJN.S259191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Jeong M et al (2017) USP8 suppresses death receptor-mediated apoptosis by enhancing FLIPL stability. Oncogene 36:458–470. https://doi.org/10.1038/onc.2016.215

    Article  CAS  PubMed  Google Scholar 

  125. Zhang S et al (2018) Deubiquitinase USP13 dictates MCL1 stability and sensitivity to BH3 mimetic inhibitors. Nat Commun 9:215. https://doi.org/10.1038/s41467-017-02693-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kushwaha D et al (2015) USP9X inhibition promotes radiation-induced apoptosis in non-small cell lung cancer cells expressing mid-to-high MCL1. Cancer Biol Ther 16:392–401. https://doi.org/10.1080/15384047.2014.1002358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kim S et al (2019) WP1130 enhances TRAIL-induced apoptosis through USP9X-dependent miR-708-mediated downregulation of c-FLIP. Cancers (Basel) 11:344. https://doi.org/10.3390/cancers11030344

    Article  CAS  Google Scholar 

  128. Liu Y et al (2019) Inhibition of the deubiquitinase USP9x induces pre-B cell homeobox 1 (PBX1) degradation and thereby stimulates prostate cancer cell apoptosis. J Biol Chem 294:4572–4582. https://doi.org/10.1074/jbc.RA118.006057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lu Q, Zhang FL, Lu DY, Shao ZM, Li DQ (2019) USP9X stabilizes BRCA1 and confers resistance to DNA-damaging agents in human cancer cells. Cancer Med 8:6730–6740. https://doi.org/10.1002/cam4.2528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chen Q et al (2018) USP10 promotes proliferation and migration and inhibits apoptosis of endometrial stromal cells in endometriosis through activating the Raf-1/MEK/ERK pathway. Am J Physiol Cell Physiol 315:C863–C872. https://doi.org/10.1152/ajpcell.00272.2018

    Article  CAS  PubMed  Google Scholar 

  131. Lee EW et al (2015) USP11-dependent selective cIAP2 deubiquitylation and stabilization determine sensitivity to Smac mimetics. Cell Death Differ 22:1463–1476. https://doi.org/10.1038/cdd.2014.234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lee EW, Song J (2016) USP11: A key regulator of cIAP2 stability and sensitivity to SMAC mimetics. Mol Cell Oncol 3:e1029829. https://doi.org/10.1080/23723556.2015.1029829

    Article  CAS  PubMed  Google Scholar 

  133. Liu J et al (2011) Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell 147:223–234. https://doi.org/10.1016/j.cell.2011.08.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Morgan EL et al (2021) The deubiquitinase (DUB) USP13 promotes Mcl-1 stabilisation in cervical cancer. Oncogene 40:2112–2129. https://doi.org/10.1038/s41388-021-01679-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ma YS et al (2020) Inhibition of USP14 deubiquitinating activity as a potential therapy for tumors with p53 deficiency. Mol Ther Oncolytics 16:147–157. https://doi.org/10.1016/j.omto.2019.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Shinji S et al (2006) Ubiquitin-specific protease 14 expression in colorectal cancer is associated with liver and lymph node metastases. Oncol Rep 15:539–543

    CAS  PubMed  Google Scholar 

  137. Chuensumran U et al (2011) Ubiquitin-specific protease 14 expression associated with intrahepatic cholangiocarcinoma cell differentiation. Asian Pac J Cancer Prev 12:775–779

    PubMed  Google Scholar 

  138. Wu N et al (2013) Over-expression of deubiquitinating enzyme USP14 in lung adenocarcinoma promotes proliferation through the accumulation of beta-catenin. Int J Mol Sci 14:10749–10760. https://doi.org/10.3390/ijms140610749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wu N, Zhang C, Bai C, Han YP, Li Q (2014) MiR-4782-3p inhibited non-small cell lung cancer growth via USP14. Cell Physiol Biochem 33:457–467. https://doi.org/10.1159/000358626

    Article  CAS  PubMed  Google Scholar 

  140. Wang Y et al (2015) Ubiquitin-specific protease 14 (USP14) regulates cellular proliferation and apoptosis in epithelial ovarian cancer. Med Oncol 32:379. https://doi.org/10.1007/s12032-014-0379-8

    Article  CAS  PubMed  Google Scholar 

  141. Song C, Ma R, Yang X, Pang S (2017) The deubiquitinating enzyme USP14 regulates leukemic chemotherapy drugs-induced cell apoptosis by suppressing ubiquitination of aurora kinase B. Cell Physiol Biochem 42:965–973. https://doi.org/10.1159/000478679

    Article  CAS  PubMed  Google Scholar 

  142. Didier R et al (2018) Targeting the proteasome-associated deubiquitinating enzyme USP14 impairs melanoma cell survival and overcomes resistance to MAPK-targeting therapies. Mol Cancer Ther 17:1416–1429. https://doi.org/10.1158/1535-7163.MCT-17-0919

    Article  CAS  PubMed  Google Scholar 

  143. Moghadami AA et al (2020) Inhibition of USP14 induces ER stress-mediated autophagy without apoptosis in lung cancer cell line A549. Cell Stress Chaperones 25:909–917. https://doi.org/10.1007/s12192-020-01125-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yu B et al (2020) USP15 promotes the apoptosis of degenerative nucleus pulposus cells by suppressing the PI3K/AKT signalling pathway. J Cell Mol Med 24:13813–13823. https://doi.org/10.1111/jcmm.15971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhou L et al (2018) USP15 inhibits multiple myeloma cell apoptosis through activating a feedback loop with the transcription factor NF-kappaBp65. Exp Mol Med 50:1–12. https://doi.org/10.1038/s12276-018-0180-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Eichhorn PJ et al (2012) USP15 stabilizes TGF-beta receptor I and promotes oncogenesis through the activation of TGF-beta signaling in glioblastoma. Nat Med 18:429–435. https://doi.org/10.1038/nm.2619

    Article  CAS  PubMed  Google Scholar 

  147. Francies FZ, Bassa S, Chatziioannou A, Kaufmann AM, Dlamini Z (2021) Splicing genomics events in cervical cancer: insights for phenotypic stratification and biomarker potency. Genes 12:130. https://doi.org/10.3390/genes12020130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Diao W et al (2020) USP18 promotes cell proliferation and suppressed apoptosis in cervical cancer cells via activating AKT signaling pathway. BMC Cancer 20:741. https://doi.org/10.1186/s12885-020-07241-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Cai J et al (2017) Downregulation of USP18 inhibits growth and induces apoptosis in hepatitis B virus-related hepatocellular carcinoma cells by suppressing BCL2L1. Exp Cell Res 358:315–322. https://doi.org/10.1016/j.yexcr.2017.07.006

    Article  CAS  PubMed  Google Scholar 

  150. Heride C et al (2016) The centrosomal deubiquitylase USP21 regulates Gli1 transcriptional activity and stability. J Cell Sci 129:4001–4013. https://doi.org/10.1242/jcs.188516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Fan Y et al (2014) USP21 negatively regulates antiviral response by acting as a RIG-I deubiquitinase. J Exp Med 211:313–328. https://doi.org/10.1084/jem.20122844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Chen Y, Zhou B, Chen D (2017) USP21 promotes cell proliferation and metastasis through suppressing EZH2 ubiquitination in bladder carcinoma. Onco Targets Ther 10:681–689. https://doi.org/10.2147/OTT.S124795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Peng L, Hu Y, Chen D, Jiao S, Sun S (2016) Ubiquitin specific peptidase 21 regulates interleukin-8 expression, stem-cell like property of human renal cell carcinoma. Oncotarget 7:42007–42016. https://doi.org/10.18632/oncotarget.9751

    Article  PubMed  PubMed Central  Google Scholar 

  154. Yun SI et al (2020) Ubiquitin-specific protease 21 promotes colorectal cancer metastasis by acting as a Fra-1 deubiquitinase. Cancers 12:207. https://doi.org/10.3390/cancers12010207

    Article  CAS  PubMed Central  Google Scholar 

  155. Liu H et al (2019) Oncogenic USP22 supports gastric cancer growth and metastasis by activating c-Myc/NAMPT/SIRT1-dependent FOXO1 and YAP signaling. Aging 11:9643–9660. https://doi.org/10.18632/aging.102410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Bai Z, Du Y, Cong L, Cheng Y (2020) The USP22 promotes the growth of cancer cells through the DYRK1A in pancreatic ductal adenocarcinoma. Gene 758:144960. https://doi.org/10.1016/j.gene.2020.144960

    Article  CAS  PubMed  Google Scholar 

  157. Lin Z et al (2012) USP22 antagonizes p53 transcriptional activation by deubiquitinating Sirt1 to suppress cell apoptosis and is required for mouse embryonic development. Mol Cell 46:484–494. https://doi.org/10.1016/j.molcel.2012.03.024

    Article  CAS  PubMed  Google Scholar 

  158. Armour SM et al (2013) A high-confidence interaction map identifies SIRT1 as a mediator of acetylation of USP22 and the SAGA coactivator complex. Mol Cell Biol 33:1487–1502. https://doi.org/10.1128/MCB.00971-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Xu H, Liu YL, Yang YM, Dong XS (2012) Knock-down of ubiquitin-specific protease 22 by micro-RNA interference inhibits colorectal cancer growth. Int J Colorectal Dis 27:21–30. https://doi.org/10.1007/s00384-011-1275-8

    Article  PubMed  Google Scholar 

  160. Zhou F et al (2020) Knockdown of ubiquitinspecific protease 51 attenuates cisplatin resistance in lung cancer through ubiquitination of zincfinger Ebox binding homeobox 1. Mol Med Rep 22:1382–1390. https://doi.org/10.3892/mmr.2020.11188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Gu Y et al (2016) Zeb1 Is a potential regulator of Six2 in the proliferation, apoptosis and migration of metanephric mesenchyme cells. Int J Mol Sci 17:1283. https://doi.org/10.3390/ijms17081283

    Article  CAS  PubMed Central  Google Scholar 

  162. Wrigley JD et al (2017) Identification and characterization of dual inhibitors of the USP25/28 deubiquitinating enzyme subfamily. ACS Chem Biol 12:3113–3125. https://doi.org/10.1021/acschembio.7b00334

    Article  CAS  PubMed  Google Scholar 

  163. Oh YT, Deng L, Deng J, Sun SY (2017) The proteasome deubiquitinase inhibitor b-AP15 enhances DR5 activation-induced apoptosis through stabilizing DR5. Sci Rep 7:8027. https://doi.org/10.1038/s41598-017-08424-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kageyama K, Asari Y, Sugimoto Y, Niioka K, Daimon M (2020) Ubiquitin-specific protease 8 inhibitor suppresses adrenocorticotropic hormone production and corticotroph tumor cell proliferation. Endocr J 67:177–184. https://doi.org/10.1507/endocrj.EJ19-0239

    Article  CAS  PubMed  Google Scholar 

  165. Bi HL et al (2020) Inhibition of UCHL1 by LDN-57444 attenuates Ang II-Induced atrial fibrillation in mice. Hypertens Res 43:168–177. https://doi.org/10.1038/s41440-019-0354-z

    Article  CAS  PubMed  Google Scholar 

  166. Wang SA et al (2021) USP24 promotes drug resistance during cancer therapy. Cell Death Differ 28:2690–2707. https://doi.org/10.1038/s41418-021-00778-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Antao AM, Tyagi A, Kim KS, Ramakrishna S (2020) Advances in deubiquitinating enzyme inhibition and applications in cancer therapeutics. Cancers 12:1579. https://doi.org/10.3390/cancers12061579

    Article  CAS  PubMed Central  Google Scholar 

  168. Pozhidaeva A et al (2017) USP7-specific inhibitors target and modify the enzyme’s active site via distinct chemical mechanisms. Cell Chem Biol 24:1501–1512.e5. https://doi.org/10.1016/j.chembiol.2017.09.004

    Article  CAS  PubMed  Google Scholar 

  169. Pesce E et al (2018) The autophagy inhibitor Spautin-1 antagonizes rescue of mutant CFTR through an autophagy-independent and USP13-mediated mechanism. Front Pharmacol 9:1464. https://doi.org/10.3389/fphar.2018.01464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Yamanaka S et al (2020) Subquinocin, a small molecule inhibitor of CYLD and USP-family deubiquitinating enzymes, promotes NF-kappaB signaling. Biochem Biophys Res Commun 524:1–7. https://doi.org/10.1016/j.bbrc.2019.12.049

    Article  CAS  PubMed  Google Scholar 

  171. Okada K et al (2013) Vialinin A is a ubiquitin-specific peptidase inhibitor. Bioorg Med Chem Lett 23:4328–4331. https://doi.org/10.1016/j.bmcl.2013.05.093

    Article  CAS  PubMed  Google Scholar 

  172. Yoshioka Y et al (2013) Ubiquitin-specific peptidase 5, a target molecule of vialinin A, is a key molecule of TNF-alpha production in RBL-2H3 cells. PLoS ONE 8:e80931. https://doi.org/10.1371/journal.pone.0080931

    Article  PubMed  PubMed Central  Google Scholar 

  173. Dexheimer TS et al (2010) Discovery of ML323 as a novel Inhibitor of the USP1/UAF1 deubiquitinase complex. In: Probe reports from the NIH molecular libraries program. Bethesda (MD)

  174. Wang X et al (2015) Synthesis and evaluation of derivatives of the proteasome deubiquitinase inhibitor b-AP15. Chem Biol Drug Des 86:1036–1048. https://doi.org/10.1111/cbdd.12571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Sakamoto KM et al (2001) Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci U S A 98:8554–8559. https://doi.org/10.1073/pnas.141230798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Liu J et al (2021) Cancer selective target degradation by folate-caged PROTACs. J Am Chem Soc 143:7380–7387. https://doi.org/10.1021/jacs.1c00451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Jin J et al (2020) The peptide PROTAC modality: a novel strategy for targeted protein ubiquitination. Theranostics 10:10141–10153. https://doi.org/10.7150/thno.46985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Maneiro MA et al (2020) Antibody-PROTAC conjugates enable HER2-dependent targeted protein degradation of BRD4. ACS Chem Biol 15:1306–1312. https://doi.org/10.1021/acschembio.0c00285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Henning NJ et al (2021) Deubiquitinase-targeting chimeras for targeted protein stabilization. bioRxiv 44:959. https://doi.org/10.1101/2021.04.30.441959

    Article  Google Scholar 

  180. Davies CW et al (2012) The co-crystal structure of ubiquitin carboxy-terminal hydrolase L1 (UCHL1) with a tripeptide fluoromethyl ketone (Z-VAE(OMe)-FMK). Bioorg Med Chem Lett 22:3900–3904. https://doi.org/10.1016/j.bmcl.2012.04.124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Gu Y et al (2018) The deubiquitinating enzyme UCHL1 negatively regulates the immunosuppressive capacity and survival of multipotent mesenchymal stromal cells. Cell Death Dis 9:459. https://doi.org/10.1038/s41419-018-0532-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank members of Baek’s laboratory for their comments on the manuscript.

Funding

This research was supported by Basic Science Program Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1I1A207500311).

Author information

Authors and Affiliations

Authors

Contributions

Both HSC and KHB contributed to the writing and design of the article. HSC prepared the figures and tables. KHB obtained the funding.

Corresponding author

Correspondence to Kwang-Hyun Baek.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare.

Ethical approval and consent to participate

As this is a review article, no ethical approval was necessary.

Consent for publication

All authors have confirmed consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, HS., Baek, KH. Pro-apoptotic and anti-apoptotic regulation mediated by deubiquitinating enzymes. Cell. Mol. Life Sci. 79, 117 (2022). https://doi.org/10.1007/s00018-022-04132-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s00018-022-04132-5

Keywords

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载