+
X
Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

In-medium gluon radiation spectrum with all-order resummation of multiple scatterings in longitudinally evolving media

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 06 November 2024
  • Volume 2024, article number 25, (2024)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
In-medium gluon radiation spectrum with all-order resummation of multiple scatterings in longitudinally evolving media
Download PDF
  • Carlota Andres  ORCID: orcid.org/0000-0002-8378-13021,
  • Liliana Apolinário  ORCID: orcid.org/0000-0003-3500-96812,3,
  • Fabio Dominguez  ORCID: orcid.org/0000-0003-2477-621X4 &
  • …
  • Marcos Gonzalez Martinez  ORCID: orcid.org/0000-0001-7670-25174 
  • 251 Accesses

  • 3 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

Over the past years, there has been a sustained effort to systematically enhance our understanding of medium-induced emissions occurring in the quark-gluon plasma, driven by the ultimate goal of advancing our comprehension of jet quenching phenomena. To ensure meaningful comparisons between these new calculations and experimental data, it becomes crucial to model the interplay between the radiation process and the evolution of the medium parameters, typically described by a hydrodynamical simulation. This step presents particular challenges when dealing with calculations involving the resummation of multiple scatterings, which have been shown to be necessary for achieving an accurate description of the in-medium emission process. In this paper, we extend our numerical calculations of the fully-resummed gluon spectrum to account for longitudinally expanding media. This new implementation allows us to quantitatively assess the accuracy of previously proposed scaling laws that establish a correspondence between an expanding medium and a “static equivalent”. Additionally, we show that such scaling laws yield significantly improved results when the static reference case is replaced by an expanding medium with the temperature following a simple power-law decay. Such correspondence will enable the application of numerical calculations of medium-induced energy loss in realistic evolving media for a broader range of phenomenological studies.

Article PDF

Download to read the full article text

Similar content being viewed by others

Medium-induced gluon radiation with full resummation of multiple scatterings for realistic parton-medium interactions

Article Open access 17 July 2020

Medium-induced cascade in expanding media

Article Open access 22 July 2020

Jet radiation in a longitudinally expanding medium

Article Open access 21 April 2021

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Interstellar medium
  • Nuclear Physics
  • Nuclear speckles
  • Photoacoustics
  • Scaling Laws
  • Waves, instabilities and nonlinear plasma dynamics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. M. Connors, C. Nattrass, R. Reed and S. Salur, Jet measurements in heavy ion physics, Rev. Mod. Phys. 90 (2018) 025005 [arXiv:1705.01974] [INSPIRE].

  2. W. Busza, K. Rajagopal and W. van der Schee, Heavy Ion Collisions: The Big Picture, and the Big Questions, Ann. Rev. Nucl. Part. Sci. 68 (2018) 339 [arXiv:1802.04801] [INSPIRE].

    Article  ADS  Google Scholar 

  3. L. Cunqueiro and A.M. Sickles, Studying the QGP with Jets at the LHC and RHIC, Prog. Part. Nucl. Phys. 124 (2022) 103940 [arXiv:2110.14490] [INSPIRE].

  4. L. Apolinário, Y.-J. Lee and M. Winn, Heavy quarks and jets as probes of the QGP, Prog. Part. Nucl. Phys. 127 (2022) 103990 [arXiv:2203.16352] [INSPIRE].

  5. J. Casalderrey-Solana and C.A. Salgado, Introductory lectures on jet quenching in heavy ion collisions, Acta Phys. Polon. B 38 (2007) 3731 [arXiv:0712.3443] [INSPIRE].

    ADS  Google Scholar 

  6. Y. Mehtar-Tani, J.G. Milhano and K. Tywoniuk, Jet physics in heavy-ion collisions, Int. J. Mod. Phys. A 28 (2013) 1340013 [arXiv:1302.2579] [INSPIRE].

    Article  ADS  Google Scholar 

  7. J.-P. Blaizot and Y. Mehtar-Tani, Jet Structure in Heavy Ion Collisions, Int. J. Mod. Phys. E 24 (2015) 1530012 [arXiv:1503.05958] [INSPIRE].

    Article  ADS  Google Scholar 

  8. G.-Y. Qin and X.-N. Wang, Jet quenching in high-energy heavy-ion collisions, Int. J. Mod. Phys. E 24 (2015) 1530014 [arXiv:1511.00790] [INSPIRE].

    Article  ADS  Google Scholar 

  9. K.C. Zapp, F. Krauss and U.A. Wiedemann, A perturbative framework for jet quenching, JHEP 03 (2013) 080 [arXiv:1212.1599] [INSPIRE].

    Article  ADS  Google Scholar 

  10. K.C. Zapp, JEWEL 2.0.0: directions for use, Eur. Phys. J. C 74 (2014) 2762 [arXiv:1311.0048] [INSPIRE].

    Article  ADS  Google Scholar 

  11. C. Marquet and T. Renk, Jet quenching in the strongly-interacting quark-gluon plasma, Phys. Lett. B 685 (2010) 270 [arXiv:0908.0880] [INSPIRE].

    Article  ADS  Google Scholar 

  12. N. Armesto et al., Constraint fitting of experimental data with a jet quenching model embedded in a hydrodynamical bulk medium, J. Phys. G 37 (2010) 025104 [arXiv:0907.0667] [INSPIRE].

  13. T. Renk, H. Holopainen, R. Paatelainen and K.J. Eskola, Systematics of the charged-hadron P_T spectrum and the nuclear suppression factor in heavy-ion collisions from \( \sqrt{s} \) = 200 GeV to \( \sqrt{s} \) = 2.76 TeV, Phys. Rev. C 84 (2011) 014906 [arXiv:1103.5308] [INSPIRE].

  14. X.-N. Wang and Y. Zhu, Medium Modification of γ-jets in High-energy Heavy-ion Collisions, Phys. Rev. Lett. 111 (2013) 062301 [arXiv:1302.5874] [INSPIRE].

  15. C. Andrés et al., Energy versus centrality dependence of the jet quenching parameter \( \hat{q} \) at RHIC and LHC: a new puzzle?, Eur. Phys. J. C 76 (2016) 475 [arXiv:1606.04837] [INSPIRE].

    Article  ADS  Google Scholar 

  16. S. Cao, T. Luo, G.-Y. Qin and X.-N. Wang, Heavy and light flavor jet quenching at RHIC and LHC energies, Phys. Lett. B 777 (2018) 255 [arXiv:1703.00822] [INSPIRE].

    Article  ADS  Google Scholar 

  17. Z. Hulcher, D. Pablos and K. Rajagopal, Resolution Effects in the Hybrid Strong/Weak Coupling Model, JHEP 03 (2018) 010 [arXiv:1707.05245] [INSPIRE].

    Article  ADS  Google Scholar 

  18. J. Casalderrey-Solana et al., Simultaneous description of hadron and jet suppression in heavy-ion collisions, Phys. Rev. C 99 (2019) 051901 [arXiv:1808.07386] [INSPIRE].

  19. Y. He et al., Interplaying mechanisms behind single inclusive jet suppression in heavy-ion collisions, Phys. Rev. C 99 (2019) 054911 [arXiv:1809.02525] [INSPIRE].

  20. A. Huss et al., Discovering Partonic Rescattering in Light Nucleus Collisions, Phys. Rev. Lett. 126 (2021) 192301 [arXiv:2007.13754] [INSPIRE].

  21. A. Huss et al., Predicting parton energy loss in small collision systems, Phys. Rev. C 103 (2021) 054903 [arXiv:2007.13758] [INSPIRE].

  22. D. Zigic et al., DREENA-A framework as a QGP tomography tool, Front. in Phys. 10 (2022) 957019 [arXiv:2110.01544] [INSPIRE].

  23. Y. Mehtar-Tani, D. Pablos and K. Tywoniuk, Cone-Size Dependence of Jet Suppression in Heavy-Ion Collisions, Phys. Rev. Lett. 127 (2021) 252301 [arXiv:2101.01742] [INSPIRE].

  24. JETSCAPE collaboration, Determining the jet transport coefficient \( \hat{q} \) from inclusive hadron suppression measurements using Bayesian parameter estimation, Phys. Rev. C 104 (2021) 024905 [arXiv:2102.11337] [INSPIRE].

  25. M. Xie, W. Ke, H. Zhang and X.-N. Wang, Information-field-based global Bayesian inference of the jet transport coefficient, Phys. Rev. C 108 (2023) L011901 [arXiv:2206.01340] [INSPIRE].

    Article  ADS  Google Scholar 

  26. JETSCAPE collaboration, Inclusive jet and hadron suppression in a multistage approach, Phys. Rev. C 107 (2023) 034911 [arXiv:2204.01163] [INSPIRE].

  27. M. Xie, W. Ke, H. Zhang and X.-N. Wang, Global constraint on the jet transport coefficient from single-hadron, dihadron, and γ-hadron spectra in high-energy heavy-ion collisions, Phys. Rev. C 109 (2024) 064917 [arXiv:2208.14419] [INSPIRE].

  28. T. Luo, Y. He, S. Cao and X.-N. Wang, Linear Boltzmann transport for jet propagation in the quark-gluon plasma: Inelastic processes and jet modification, Phys. Rev. C 109 (2024) 034919 [arXiv:2306.13742] [INSPIRE].

  29. Y. Mehtar-Tani, D. Pablos and K. Tywoniuk, Jet suppression and azimuthal anisotropy from RHIC to LHC, Phys. Rev. D 110 (2024) 014009 [arXiv:2402.07869] [INSPIRE].

  30. J. Brewer, J.G. Milhano and J. Thaler, Sorting out quenched jets, Phys. Rev. Lett. 122 (2019) 222301 [arXiv:1812.05111] [INSPIRE].

  31. P. Caucal, E. Iancu, A.H. Mueller and G. Soyez, Nuclear modification factors for jet fragmentation, JHEP 10 (2020) 204 [arXiv:2005.05852] [INSPIRE].

    Article  ADS  Google Scholar 

  32. R. Baier et al., Radiative energy loss of high-energy quarks and gluons in a finite volume quark-gluon plasma, Nucl. Phys. B 483 (1997) 291 [hep-ph/9607355] [INSPIRE].

  33. R. Baier et al., Radiative energy loss and p⊥ broadening of high-energy partons in nuclei, Nucl. Phys. B 484 (1997) 265 [hep-ph/9608322] [INSPIRE].

  34. B.G. Zakharov, Fully quantum treatment of the Landau-Pomeranchuk-Migdal effect in QED and QCD, JETP Lett. 63 (1996) 952 [hep-ph/9607440] [INSPIRE].

  35. B.G. Zakharov, Radiative energy loss of high-energy quarks in finite size nuclear matter and quark-gluon plasma, JETP Lett. 65 (1997) 615 [hep-ph/9704255] [INSPIRE].

  36. M. Gyulassy, P. Levai and I. Vitev, Reaction operator approach to nonAbelian energy loss, Nucl. Phys. B 594 (2001) 371 [nucl-th/0006010] [INSPIRE].

  37. M. Gyulassy, P. Levai and I. Vitev, NonAbelian energy loss at finite opacity, Phys. Rev. Lett. 85 (2000) 5535 [nucl-th/0005032] [INSPIRE].

  38. U.A. Wiedemann, Gluon radiation off hard quarks in a nuclear environment: Opacity expansion, Nucl. Phys. B 588 (2000) 303 [hep-ph/0005129] [INSPIRE].

  39. A.V. Sadofyev, M.D. Sievert and I. Vitev, Ab initio coupling of jets to collective flow in the opacity expansion approach, Phys. Rev. D 104 (2021) 094044 [arXiv:2104.09513] [INSPIRE].

  40. J. Barata, A.V. Sadofyev and C.A. Salgado, Jet broadening in dense inhomogeneous matter, Phys. Rev. D 105 (2022) 114010 [arXiv:2202.08847] [INSPIRE].

  41. C. Andres, F. Dominguez, A.V. Sadofyev and C.A. Salgado, Jet broadening in flowing matter: Resummation, Phys. Rev. D 106 (2022) 074023 [arXiv:2207.07141] [INSPIRE].

  42. J. Barata, X. Mayo López, A.V. Sadofyev and C.A. Salgado, Medium induced gluon spectrum in dense inhomogeneous matter, Phys. Rev. D 108 (2023) 034018 [arXiv:2304.03712] [INSPIRE].

  43. B.G. Zakharov, Radiative parton energy loss and jet quenching in high-energy heavy-ion collisions, JETP Lett. 80 (2004) 617 [hep-ph/0410321] [INSPIRE].

  44. S. Caron-Huot and C. Gale, Finite-size effects on the radiative energy loss of a fast parton in hot and dense strongly interacting matter, Phys. Rev. C 82 (2010) 064902 [arXiv:1006.2379] [INSPIRE].

  45. X. Feal and R. Vazquez, Intensity of gluon bremsstrahlung in a finite plasma, Phys. Rev. D 98 (2018) 074029 [arXiv:1811.01591] [INSPIRE].

  46. C. Andres, L. Apolinário and F. Dominguez, Medium-induced gluon radiation with full resummation of multiple scatterings for realistic parton-medium interactions, JHEP 07 (2020) 114 [arXiv:2002.01517] [INSPIRE].

    Article  ADS  Google Scholar 

  47. Y. Mehtar-Tani, Gluon bremsstrahlung in finite media beyond multiple soft scattering approximation, JHEP 07 (2019) 057 [arXiv:1903.00506] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  48. J. Barata and Y. Mehtar-Tani, Improved opacity expansion at NNLO for medium induced gluon radiation, JHEP 10 (2020) 176 [arXiv:2004.02323] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  49. C. Andres, F. Dominguez and M. Gonzalez Martinez, From soft to hard radiation: the role of multiple scatterings in medium-induced gluon emissions, JHEP 03 (2021) 102 [arXiv:2011.06522] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  50. C. Andres et al., Medium-induced radiation with vacuum propagation in the pre-hydrodynamics phase, JHEP 03 (2023) 189 [arXiv:2211.10161] [INSPIRE].

    Article  ADS  Google Scholar 

  51. G.D. Moore, S. Schlichting, N. Schlusser and I. Soudi, Non-perturbative determination of collisional broadening and medium induced radiation in QCD plasmas, JHEP 10 (2021) 059 [arXiv:2105.01679] [INSPIRE].

    Article  ADS  Google Scholar 

  52. S. Schlichting and I. Soudi, Splitting rates in QCD plasmas from a nonperturbative determination of the momentum broadening kernel C(q ⊥), Phys. Rev. D 105 (2022) 076002 [arXiv:2111.13731] [INSPIRE].

  53. R.M. Yazdi, S. Shi, C. Gale and S. Jeon, Leading order, next-to-leading order, and nonperturbative parton collision kernels: Effects in static and evolving media, Phys. Rev. C 106 (2022) 064902 [arXiv:2206.05855] [INSPIRE].

  54. J.-P. Blaizot, F. Dominguez, E. Iancu and Y. Mehtar-Tani, Medium-induced gluon branching, JHEP 01 (2013) 143 [arXiv:1209.4585] [INSPIRE].

    Article  ADS  Google Scholar 

  55. L. Apolinário, N. Armesto, J.G. Milhano and C.A. Salgado, Medium-induced gluon radiation and colour decoherence beyond the soft approximation, JHEP 02 (2015) 119 [arXiv:1407.0599] [INSPIRE].

    Article  ADS  Google Scholar 

  56. J.H. Isaksen and K. Tywoniuk, Precise description of medium-induced emissions, JHEP 09 (2023) 049 [arXiv:2303.12119] [INSPIRE].

    Article  ADS  Google Scholar 

  57. P.B. Arnold, Simple Formula for High-Energy Gluon Bremsstrahlung in a Finite, Expanding Medium, Phys. Rev. D 79 (2009) 065025 [arXiv:0808.2767] [INSPIRE].

  58. S.P. Adhya, C.A. Salgado, M. Spousta and K. Tywoniuk, Medium-induced cascade in expanding media, JHEP 07 (2020) 150 [arXiv:1911.12193] [INSPIRE].

    Article  ADS  Google Scholar 

  59. S.P. Adhya, C.A. Salgado, M. Spousta and K. Tywoniuk, Multi-partonic medium induced cascades in expanding media, Eur. Phys. J. C 82 (2022) 20 [arXiv:2106.02592] [INSPIRE].

    Article  ADS  Google Scholar 

  60. S.P. Adhya et al., Transverse momentum broadening of medium-induced cascades in expanding media, Eur. Phys. J. C 83 (2023) 512 [arXiv:2211.15803] [INSPIRE].

    Article  ADS  Google Scholar 

  61. C.A. Salgado and U.A. Wiedemann, A dynamical scaling law for jet tomography, Phys. Rev. Lett. 89 (2002) 092303 [hep-ph/0204221] [INSPIRE].

  62. C.A. Salgado and U.A. Wiedemann, Calculating quenching weights, Phys. Rev. D 68 (2003) 014008 [hep-ph/0302184] [INSPIRE].

  63. M. Gyulassy and X.-N. Wang, Multiple collisions and induced gluon Bremsstrahlung in QCD, Nucl. Phys. B 420 (1994) 583 [nucl-th/9306003] [INSPIRE].

  64. P. Aurenche, F. Gelis and H. Zaraket, A simple sum rule for the thermal gluon spectral function and applications, JHEP 05 (2002) 043 [hep-ph/0204146] [INSPIRE].

  65. C. Park, C. Shen, S. Jeon and C. Gale, Rapidity-dependent jet energy loss in small systems with finite-size effects and running coupling, Nucl. Part. Phys. Proc. 289-290 (2017) 289 [arXiv:1612.06754] [INSPIRE].

  66. C. Park, Jet modification in strongly-coupled quark-gluon plasma, Ph.D. thesis, McGill University, Montréal, Canada (2021) [INSPIRE].

  67. M. Luzum and P. Romatschke, Conformal Relativistic Viscous Hydrodynamics: Applications to RHIC results at \( \sqrt{s_{NN}} \) = 200 GeV, Phys. Rev. C 78 (2008) 034915 [Erratum ibid. 79 (2009) 039903] [arXiv:0804.4015] [INSPIRE].

  68. M. Luzum and P. Romatschke, Viscous Hydrodynamic Predictions for Nuclear Collisions at the LHC, Phys. Rev. Lett. 103 (2009) 262302 [arXiv:0901.4588] [INSPIRE].

  69. ALICE collaboration, Centrality determination of Pb-Pb collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV with ALICE, Phys. Rev. C 88 (2013) 044909 [arXiv:1301.4361] [INSPIRE].

  70. ALICE collaboration, Centrality Dependence of the Charged-Particle Multiplicity Density at Midrapidity in Pb-Pb Collisions at \( \sqrt{s_{\textrm{NN}}} \) = 5.02 TeV, Phys. Rev. Lett. 116 (2016) 222302 [arXiv:1512.06104] [INSPIRE].

  71. H.-J. Drescher, A. Dumitru, A. Hayashigaki and Y. Nara, The eccentricity in heavy-ion collisions from color glass condensate initial conditions, Phys. Rev. C 74 (2006) 044905 [nucl-th/0605012] [INSPIRE].

  72. H. Niemi, K.J. Eskola and R. Paatelainen, Event-by-event fluctuations in a perturbative QCD + saturation + hydrodynamics model: Determining QCD matter shear viscosity in ultrarelativistic heavy-ion collisions, Phys. Rev. C 93 (2016) 024907 [arXiv:1505.02677] [INSPIRE].

  73. K.J. Eskola, K. Kajantie, P.V. Ruuskanen and K. Tuominen, Scaling of transverse energies and multiplicities with atomic number and energy in ultrarelativistic nuclear collisions, Nucl. Phys. B 570 (2000) 379 [hep-ph/9909456] [INSPIRE].

  74. P. Huovinen and P. Petreczky, QCD Equation of State and Hadron Resonance Gas, Nucl. Phys. A 837 (2010) 26 [arXiv:0912.2541] [INSPIRE].

    Article  ADS  Google Scholar 

  75. C. Andres et al., Jet quenching as a probe of the initial stages in heavy-ion collisions, Phys. Lett. B 803 (2020) 135318 [arXiv:1902.03231] [INSPIRE].

  76. Y. Fu, J. Casalderrey-Solana and X.-N. Wang, Asymmetric transverse momentum broadening in an inhomogeneous medium, Phys. Rev. D 107 (2023) 054038 [arXiv:2204.05323] [INSPIRE].

  77. Y. Mehtar-Tani and K. Tywoniuk, Radiative energy loss of neighboring subjets, Nucl. Phys. A 979 (2018) 165 [arXiv:1706.06047] [INSPIRE].

    Article  ADS  Google Scholar 

  78. Y. Mehtar-Tani and K. Tywoniuk, Sudakov suppression of jets in QCD media, Phys. Rev. D 98 (2018) 051501 [arXiv:1707.07361] [INSPIRE].

  79. J.G. Milhano and K.C. Zapp, Origins of the di-jet asymmetry in heavy ion collisions, Eur. Phys. J. C 76 (2016) 288 [arXiv:1512.08107] [INSPIRE].

    Article  ADS  Google Scholar 

  80. M.A. Escobedo and E. Iancu, Multi-particle correlations and KNO scaling in the medium-induced jet evolution, JHEP 12 (2016) 104 [arXiv:1609.06104] [INSPIRE].

    Article  ADS  Google Scholar 

  81. N.-B. Chang and G.-Y. Qin, Full jet evolution in quark-gluon plasma and nuclear modification of jet production and jet shape in Pb+Pb collisions at 2.76ATeV at the CERN Large Hadron Collider, Phys. Rev. C 94 (2016) 024902 [arXiv:1603.01920] [INSPIRE].

  82. M.A. Escobedo and E. Iancu, Event-by-event fluctuations in the medium-induced jet evolution, JHEP 05 (2016) 008 [arXiv:1601.03629] [INSPIRE].

    Article  ADS  Google Scholar 

  83. K. Rajagopal, A.V. Sadofyev and W. van der Schee, Evolution of the jet opening angle distribution in holographic plasma, Phys. Rev. Lett. 116 (2016) 211603 [arXiv:1602.04187] [INSPIRE].

  84. Y. Tachibana, N.-B. Chang and G.-Y. Qin, Full jet in quark-gluon plasma with hydrodynamic medium response, Phys. Rev. C 95 (2017) 044909 [arXiv:1701.07951] [INSPIRE].

  85. N.-B. Chang, S. Cao and G.-Y. Qin, Probing medium-induced jet splitting and energy loss in heavy-ion collisions, Phys. Lett. B 781 (2018) 423 [arXiv:1707.03767] [INSPIRE].

    Article  ADS  Google Scholar 

  86. J. Brewer, A. Sadofyev and W. van der Schee, Jet shape modifications in holographic dijet systems, Phys. Lett. B 820 (2021) 136492 [arXiv:1809.10695] [INSPIRE].

  87. J. Casalderrey-Solana, G. Milhano, D. Pablos and K. Rajagopal, Modification of Jet Substructure in Heavy Ion Collisions as a Probe of the Resolution Length of Quark-Gluon Plasma, JHEP 01 (2020) 044 [arXiv:1907.11248] [INSPIRE].

    Article  ADS  Google Scholar 

  88. P. Caucal, E. Iancu and G. Soyez, Deciphering the zg distribution in ultrarelativistic heavy ion collisions, JHEP 10 (2019) 273 [arXiv:1907.04866] [INSPIRE].

    Article  ADS  Google Scholar 

  89. J. Brewer, Q. Brodsky and K. Rajagopal, Disentangling jet modification in jet simulations and in Z+jet data, JHEP 02 (2022) 175 [arXiv:2110.13159] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Carlos A. Salgado for insightful discussions about this work and for carefully reading this manuscript. This work is supported by European Research Council project ERC-2018-ADG-835105 YoctoLHC; by Maria de Maetzu excellence program under project CEX2020-001035-M; by Spanish Research State Agency under project PID2020-119632GB-I00; by OE Portugal, Fundação para a Ciência e a Tecnologia (FCT), I.P., projects EXPL/FIS-PAR/0905/2021 and CERN/FIS-PAR/0032/2021; by European Union ERDF. This work has received financial support from Xunta de Galicia (CIGUS Network of Research Centers). C.A. has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 893021 (JQ4LHC). L.A. was supported by FCT under contract 2021.03209.CEECIND. M.G.M. was supported by Ministerio de Universidades of Spain through the National Program FPU (grant number FPU18/01966).

Author information

Authors and Affiliations

  1. CPHT, CNRS, École polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France

    Carlota Andres

  2. LIP, Av. Prof. Gama Pinto, 2, P-1649-003, Lisboa, Portugal

    Liliana Apolinário

  3. Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal

    Liliana Apolinário

  4. Instituto Galego de Física de Altas Enerxías IGFAE, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain

    Fabio Dominguez & Marcos Gonzalez Martinez

Authors
  1. Carlota Andres
    View author publications

    Search author on:PubMed Google Scholar

  2. Liliana Apolinário
    View author publications

    Search author on:PubMed Google Scholar

  3. Fabio Dominguez
    View author publications

    Search author on:PubMed Google Scholar

  4. Marcos Gonzalez Martinez
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Liliana Apolinário.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2307.06226

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andres, C., Apolinário, L., Dominguez, F. et al. In-medium gluon radiation spectrum with all-order resummation of multiple scatterings in longitudinally evolving media. J. High Energ. Phys. 2024, 25 (2024). https://doi.org/10.1007/JHEP11(2024)025

Download citation

  • Received: 17 July 2024

  • Revised: 10 August 2024

  • Accepted: 05 October 2024

  • Published: 06 November 2024

  • Version of record: 06 November 2024

  • DOI: https://doi.org/10.1007/JHEP11(2024)025

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Jets and Jet Substructure
  • Quark-Gluon Plasma
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载