+
X
Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Explanation of electron and muon g − 2 anomalies in the MSSM

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 04 October 2019
  • Volume 2019, article number 24, (2019)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Explanation of electron and muon g − 2 anomalies in the MSSM
Download PDF
  • Marcin Badziak1 &
  • Kazuki Sakurai1 
  • 787 Accesses

  • 83 Citations

  • 2 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

The current experimental values of anomalous magnetic moments of muon and electron deviate from the Standard Model predictions by few standard deviations, which might be a hint of new physics. The sizes and signs of these deviations are different and opposite between the electron and muon, which makes it difficult to explain both of these anomalies in a consistent model without introducing large flavour-violating effects. It is shown that they can be simultaneously explained in the Minimal Supersymmetric Standard Model (MSSM) by arranging the sizes of bino-slepton and chargino-sneutrino contributions differently between the electron and muon sectors. The MSSM spectrum features very light selectrons and wino-like chargino, while they can evade LHC constraints due to degenerate spectra.

Article PDF

Download to read the full article text

Similar content being viewed by others

Improved \({(g-2)_\mu }\) measurements and wino/higgsino dark matter

Article Open access 04 December 2021

Explaining muon \({g}-2\) data in the \(\mu \nu \)SSM

Article Open access 15 February 2021

Explaining (g − 2)μ with multi-TeV sleptons

Article Open access 19 July 2021

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Chromosome abnormality
  • Elementary Particles, Quantum Field Theory
  • Magnetospheric Physics
  • Particle Physics
  • Fundamental concepts and interpretations of QM
  • Quantum Electrodynamics, Relativistic and Many-body Calculations
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Muon g-2 collaboration, Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev.D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].

  2. RBC, UKQCD collaboration, Calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment, Phys. Rev. Lett. 121 (2018) 022003 [arXiv:1801.07224] [INSPIRE].

  3. R.H. Parker et al., Measurement of the fine-structure constant as a test of the Standard Model, Science360 (2018) 191 [arXiv:1812.04130] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. D. Hanneke, S. Fogwell and G. Gabrielse, New measurement of the electron magnetic moment and the fine structure constant, Phys. Rev. Lett.100 (2008) 120801 [arXiv:0801.1134] [INSPIRE].

    Article  ADS  Google Scholar 

  5. T. Moroi, The muon anomalous magnetic dipole moment in the minimal supersymmetric standard model, Phys. Rev.D 53 (1996) 6565 [Erratum ibid. D 56 (1997) 4424] [hep-ph/9512396][INSPIRE].

  6. S.P. Martin and J.D. Wells, Muon anomalous magnetic dipole moment in supersymmetric theories, Phys. Rev.D 64 (2001) 035003 [hep-ph/0103067] [INSPIRE].

  7. R. Jackiw and S. Weinberg, Weak interaction corrections to the muon magnetic moment and to muonic atom energy levels, Phys. Rev. D 5 (1972) 2396 [INSPIRE].

    ADS  Google Scholar 

  8. J.P. Leveille, The second order weak correction to (g − 2) of the muon in arbitrary gauge models, Nucl. Phys. B 137 (1978) 63 [INSPIRE].

    Article  ADS  Google Scholar 

  9. M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80 (2009) 095002 [arXiv:0811.1030] [INSPIRE].

    ADS  Google Scholar 

  10. A. Crivellin, M. Hoferichter and P. Schmidt-Wellenburg, Combined explanations of (g − 2)μ,eand implications for a large muon EDM, Phys. Rev.D 98 (2018) 113002 [arXiv:1807.11484] [INSPIRE].

  11. G.F. Giudice, P. Paradisi and M. Passera, Testing new physics with the electron g − 2, JHEP11 (2012) 113 [arXiv:1208.6583] [INSPIRE].

    Article  ADS  Google Scholar 

  12. P. Fayet, U-boson production in e+e−annihilations, ψ and Υ decays and light dark matter, Phys. Rev.D 75 (2007) 115017 [hep-ph/0702176] [INSPIRE].

  13. H. Davoudiasl and W.J. Marciano, Tale of two anomalies, Phys. Rev.D 98 (2018) 075011 [arXiv:1806.10252] [INSPIRE].

    ADS  Google Scholar 

  14. J. Liu, C.E.M. Wagner and X.-P. Wang, A light complex scalar for the electron and muon anomalous magnetic moments, JHEP03 (2019) 008 [arXiv:1810.11028] [INSPIRE].

    Article  ADS  Google Scholar 

  15. M. Bauer, M. Neubert, S. Renner, M. Schnubel and A. Thamm, Axion-like particles, lepton-flavor violation and a new explanation of aμand ae, arXiv:1908.00008 [INSPIRE].

  16. X.-F. Han, T. Li, L. Wang and Y. Zhang, Simple interpretations of lepton anomalies in the lepton-specific inert two-Higgs-doublet model, Phys. Rev.D 99 (2019) 095034 [arXiv:1812.02449] [INSPIRE].

    ADS  Google Scholar 

  17. B. Dutta and Y. Mimura, Electron g − 2 with flavor violation in MSSM, Phys. Lett.B 790 (2019) 563 [arXiv:1811.10209] [INSPIRE].

    Article  ADS  Google Scholar 

  18. Particle Data Group collaboration, Review of particle physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].

  19. ALEPH collaboration, Search for scalar leptons in e+e−collisions at center-of-mass energies up to 209 GeV, Phys. Lett. B 526 (2002) 206 [hep-ex/0112011][INSPIRE].

  20. DELPHI collaboration, Searches for supersymmetric particles in e+e−collisions up to 208 GeV and interpretation of the results within the MSSM, Eur. Phys. J.C 31 (2003) 421 [hep-ex/0311019][INSPIRE].

  21. L3 collaboration, Search for scalar leptons and scalar quarks at LEP, Phys. Lett.B 580 (2004) 37 [hep-ex/0310007] [INSPIRE].

  22. OPAL collaboration, Search for anomalous production of dilepton events with missing transverse momentum in e+e−collisions at \( \sqrt{s} \)= 183 Gev to 209 GeV, Eur. Phys. J.C 32 (2004) 453 [hep-ex/0309014][INSPIRE].

  23. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: a program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun.176 (2007) 367 [hep-ph/0607059] [INSPIRE].

  24. H. Baer, C. Balázs, J. Ferrandis and X. Tata, Impact of muon anomalous magnetic moment on supersymmetric models, Phys. Rev.D 64 (2001) 035004 [hep-ph/0103280] [INSPIRE].

  25. D. Stöckinger, The muon magnetic moment and supersymmetry, J. Phys.G 34 (2007) R45 [hep-ph/0609168] [INSPIRE].

  26. M. Endo, K. Hamaguchi, T. Kitahara and T. Yoshinaga, Probing bino contribution to muon g−2,JHEP11(2013) 013 [arXiv:1309.3065] [INSPIRE].

    Article  ADS  Google Scholar 

  27. M. Badziak et al., Upper bounds on sparticle masses from muon g − 2 and the Higgs mass and the complementarity of future colliders, JHEP03 (2015) 003 [arXiv:1411.1450] [INSPIRE].

    Article  ADS  Google Scholar 

  28. K. Kowalska, L. Roszkowski, E.M. Sessolo and A.J. Williams, GUT-inspired SUSY and the muon g − 2 anomaly: prospects for LHC 14 TeV, JHEP06 (2015) 020 [arXiv:1503.08219] [INSPIRE].

    Article  ADS  Google Scholar 

  29. M. Lindner, M. Platscher and F.S. Queiroz, A call for new physics: the muon anomalous magnetic moment and lepton flavor violation, Phys. Rept.731 (2018) 1 [arXiv:1610.06587] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: a Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun.176 (2007) 426 [hep-ph/0211331][INSPIRE].

  31. M. Muhlleitner, A. Djouadi and Y. Mambrini, SDECAY: a Fortran code for the decays of the supersymmetric particles in the MSSM, Comput. Phys. Commun. 168 (2005) 46 [hep-ph/0311167] [INSPIRE].

  32. W. Beenakker et al., The Production of charginos/neutralinos and sleptons at hadron colliders, Phys. Rev. Lett.83 (1999) 3780 [Erratum ibid. 100 (2008) 029901] [hep-ph/9906298][INSPIRE].

  33. CMS collaboration, Search for disappearing tracks as a signature of new long-lived particles in proton-proton collisions at \( \sqrt{s} \)= 13 TeV, JHEP08 (2018) 016 [arXiv:1804.07321] [INSPIRE].

  34. ATLAS collaboration, Search for long-lived charginos based on a disappearing-track signature in pp collisions at \( \sqrt{s} \)= 13 TeV with the ATLAS detector, JHEP06 (2018) 022 [arXiv:1712.02118] [INSPIRE].

  35. M. Badziak et al., Detecting underabundant neutralinos, JHEP11 (2015) 053 [arXiv:1506.07177] [INSPIRE].

    Article  ADS  Google Scholar 

  36. D.M. Pierce, J.A. Bagger, K.T. Matchev and R.J. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys.B 491 (1997) 3 [hep-ph/9606211] [INSPIRE].

  37. CMS collaboration, Search for new physics in events with two soft oppositely charged leptons and missing transverse momentum in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett.B 782 (2018) 440 [arXiv:1801.01846] [INSPIRE].

  38. ATLAS collaboration, Searches for electroweak production of supersymmetric particles with compressed mass spectra in \( \sqrt{s} \) = 13 TeV pp collisions with the ATLAS detector, ATLAS-CONF-2019-014 (2019).

  39. ATLAS collaboration, Search for electroweak production of charginos and sleptons decaying in final states with two leptons and missing transverse momentum in \( \sqrt{s} \) = 13 TeV pp collisions using the ATLAS detector, ATLAS-CONF-2019-008 (2019).

  40. CMS collaboration, Search for supersymmetric partners of electrons and muons in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 790 (2019) 140 [arXiv:1806.05264] [INSPIRE].

  41. MEG collaboration, Search for the lepton flavour violating decay μ+→ e+γ with the full dataset of the MEG experiment, Eur. Phys. J. C 76 (2016) 434 [arXiv:1605.05081] [INSPIRE].

  42. J.L. Evans, M. Ibe and T.T. Yanagida, Relatively heavy Higgs boson in more generic gauge mediation, Phys. Lett.B 705 (2011) 342 [arXiv:1107.3006] [INSPIRE].

    Article  ADS  Google Scholar 

  43. W. Yin and N. Yokozaki, Splitting mass spectra and muon g − 2 in Higgs-anomaly mediation, Phys. Lett.B 762 (2016) 72 [arXiv:1607.05705] [INSPIRE].

    Article  ADS  Google Scholar 

  44. CMS collaboration, Search for electroweak production of charginos and neutralinos in multilepton final states in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP03 (2018) 166 [arXiv:1709.05406] [INSPIRE].

  45. ATLAS collaboration, Search for direct production of electroweakinos in final states with one lepton, missing transverse momentum and a Higgs boson decaying into two b-jets in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, ATLAS-CONF-2019-031 (2019).

  46. CMS collaboration, Combined search for electroweak production of charginos and neutralinos in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 03 (2018) 160 [arXiv:1801.03957] [INSPIRE].

  47. M. Endo and W. Yin, Explaining electron and muon g − 2 anomaly in SUSY without lepton-flavor mixings, JHEP08 (2019) 122 [arXiv:1906.08768] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

  1. Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093, Warsaw, Poland

    Marcin Badziak & Kazuki Sakurai

Authors
  1. Marcin Badziak
    View author publications

    Search author on:PubMed Google Scholar

  2. Kazuki Sakurai
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Marcin Badziak.

Additional information

ArXiv ePrint1908.03607

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badziak, M., Sakurai, K. Explanation of electron and muon g − 2 anomalies in the MSSM. J. High Energ. Phys. 2019, 24 (2019). https://doi.org/10.1007/JHEP10(2019)024

Download citation

  • Received: 20 August 2019

  • Accepted: 09 September 2019

  • Published: 04 October 2019

  • Version of record: 04 October 2019

  • DOI: https://doi.org/10.1007/JHEP10(2019)024

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Supersymmetry Phenomenology
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载