+
X
Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Higgs boson masses and mixings in the complex MSSM with two-loop top-Yukawa-coupling corrections

  • Open access
  • Published: 30 October 2014
  • Volume 2014, article number 171, (2014)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Higgs boson masses and mixings in the complex MSSM with two-loop top-Yukawa-coupling corrections
Download PDF
  • Wolfgang Hollik1 &
  • Sebastian Paßehr1 
  • 676 Accesses

  • 47 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

Results for the leading two-loop corrections of \( \mathcal{O}\left({\alpha}_t^2\right) \) from the Yukawa sector to the Higgs-boson mass spectrum of the MSSM with complex parameters are presented, with details of the analytical calculation performed in the Feynman-diagrammatic approach using a mixed on-shell/\( \overline{\mathrm{DR}} \) scheme that can be directly matched onto the higher-order terms in the code FeynHiggs. Numerical results are shown for the masses and mixing effects in the neutral Higgs-boson sector and their variation with the phases of the complex parameters. Furthermore, the analytical expressions of the two-loop self-energies and the required renormalization constants are recorded. The new results can consistently be implemented in FeynHiggs.

Article PDF

Download to read the full article text

Similar content being viewed by others

Two-loop top and bottom Yukawa corrections to the Higgs-boson masses in the complex MSSM

Article Open access 15 March 2018

Complete two-loop QCD contributions to the lightest Higgs-boson mass in the MSSM with complex parameters

Article Open access 14 July 2018

Two-loop \( \mathcal{O} \)((αt + αλ + ακ)2) corrections to the Higgs boson masses in the CP-violating NMSSM

Article Open access 28 September 2021

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Complex Plasma
  • Matter-Antimatter Interactions
  • Particle Physics
  • Protein Complex
  • Theoretical Particle Physics
  • Quantum Electrodynamics, Relativistic and Many-body Calculations
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. ATLAS collaboration, M. Kado, Physics of the Brout-Englert-Higgs boson in ATLAS, talk given at the 37th International Conference on High Energy Physics, Valencia Spain July 2014.

  4. CMS collaboration, A. David, Physics of the Brout-Englert-Higgs boson in CMS, talk given at the 37th International Conference on High Energy Physics, Valencia Spain July 2014.

  5. A. Pilaftsis, CP odd tadpole renormalization of Higgs scalar-pseudoscalar mixing, Phys. Rev. D 58 (1998) 096010 [hep-ph/9803297] [INSPIRE].

    ADS  Google Scholar 

  6. A. Pilaftsis, Higgs scalar-pseudoscalar mixing in the minimal supersymmetric standard model, Phys. Lett. B 435 (1998) 88 [hep-ph/9805373] [INSPIRE].

    Article  ADS  Google Scholar 

  7. J.A. Casas, J.R. Espinosa, M. Quirós and A. Riotto, The lightest Higgs boson mass in the minimal supersymmetric standard model, Nucl. Phys. B 436 (1995) 3 [Erratum ibid. B 439 (1995) 466] [hep-ph/9407389] [INSPIRE].

  8. M.S. Carena, J.R. Espinosa, M. Quirós and C.E.M. Wagner, Analytical expressions for radiatively corrected Higgs masses and couplings in the MSSM, Phys. Lett. B 355 (1995) 209 [hep-ph/9504316] [INSPIRE].

    Article  ADS  Google Scholar 

  9. S. Heinemeyer, W. Hollik and G. Weiglein, QCD corrections to the masses of the neutral CP even Higgs bosons in the MSSM, Phys. Rev. D 58 (1998) 091701 [hep-ph/9803277] [INSPIRE].

    ADS  MATH  Google Scholar 

  10. S. Heinemeyer, W. Hollik and G. Weiglein, Precise prediction for the mass of the lightest Higgs boson in the MSSM, Phys. Lett. B 440 (1998) 296 [hep-ph/9807423] [INSPIRE].

    Article  ADS  Google Scholar 

  11. S. Heinemeyer, W. Hollik and G. Weiglein, The masses of the neutral CP even Higgs bosons in the MSSM: accurate analysis at the two loop level, Eur. Phys. J. C 9 (1999) 343 [hep-ph/9812472] [INSPIRE].

    ADS  MATH  Google Scholar 

  12. S. Heinemeyer, W. Hollik and G. Weiglein, The mass of the lightest MSSM Higgs boson: a compact analytical expression at the two loop level, Phys. Lett. B 455 (1999) 179 [hep-ph/9903404] [INSPIRE].

    Article  ADS  Google Scholar 

  13. M.S. Carena et al., Reconciling the two loop diagrammatic and effective field theory computations of the mass of the lightest CP even Higgs boson in the MSSM, Nucl. Phys. B 580 (2000) 29 [hep-ph/0001002] [INSPIRE].

    Article  ADS  Google Scholar 

  14. S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, High-precision predictions for the MSSM Higgs sector at O(α b α s ), Eur. Phys. J. C 39 (2005) 465 [hep-ph/0411114] [INSPIRE].

    Article  ADS  Google Scholar 

  15. S. Borowka, T. Hahn, S. Heinemeyer, G. Heinrich and W. Hollik, Momentum-dependent two-loop QCD corrections to the neutral Higgs-boson masses in the MSSM, Eur. Phys. J. C 74 (2014) 2994 [arXiv:1404.7074] [INSPIRE].

    Article  ADS  Google Scholar 

  16. R.V. Harlander, P. Kant, L. Mihaila and M. Steinhauser, Higgs boson mass in supersymmetry to three loops, Phys. Rev. Lett. 100 (2008) 191602 [arXiv:0803.0672] [INSPIRE].

    Article  ADS  Google Scholar 

  17. R.V. Harlander, P. Kant, L. Mihaila and M. Steinhauser, Higgs boson mass in supersymmetry to three loops, Phys. Rev. Lett. 100 (2008) 191602 [arXiv:0803.0672] [INSPIRE].

    Article  ADS  Google Scholar 

  18. P. Kant, R.V. Harlander, L. Mihaila and M. Steinhauser, Light MSSM Higgs boson mass to three-loop accuracy, JHEP 08 (2010) 104 [arXiv:1005.5709] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  19. R.-J. Zhang, Two loop effective potential calculation of the lightest CP even Higgs boson mass in the MSSM, Phys. Lett. B 447 (1999) 89 [hep-ph/9808299] [INSPIRE].

    Article  ADS  Google Scholar 

  20. J.R. Espinosa and R.-J. Zhang, Complete two loop dominant corrections to the mass of the lightest CP even Higgs boson in the minimal supersymmetric standard model, Nucl. Phys. B 586 (2000) 3 [hep-ph/0003246] [INSPIRE].

    Article  ADS  Google Scholar 

  21. J.R. Espinosa and R.-J. Zhang, MSSM lightest CP even Higgs boson mass to O(α s α t ): the effective potential approach, JHEP 03 (2000) 026 [hep-ph/9912236] [INSPIRE].

    Article  ADS  Google Scholar 

  22. J.R. Espinosa and I. Navarro, Radiative corrections to the Higgs boson mass for a hierarchical stop spectrum, Nucl. Phys. B 615 (2001) 82 [hep-ph/0104047] [INSPIRE].

    Article  ADS  Google Scholar 

  23. G. Degrassi, P. Slavich and F. Zwirner, On the neutral Higgs boson masses in the MSSM for arbitrary stop mixing, Nucl. Phys. B 611 (2001) 403 [hep-ph/0105096] [INSPIRE].

    Article  ADS  Google Scholar 

  24. R. Hempfling and A.H. Hoang, Two loop radiative corrections to the upper limit of the lightest Higgs boson mass in the minimal supersymmetric model, Phys. Lett. B 331 (1994) 99 [hep-ph/9401219] [INSPIRE].

    Article  ADS  Google Scholar 

  25. A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, On the two loop sbottom corrections to the neutral Higgs boson masses in the MSSM, Nucl. Phys. B 643 (2002) 79 [hep-ph/0206101] [INSPIRE].

    Article  ADS  Google Scholar 

  26. A. Dedes, G. Degrassi and P. Slavich, On the two loop Yukawa corrections to the MSSM Higgs boson masses at large tan β, Nucl. Phys. B 672 (2003) 144 [hep-ph/0305127] [INSPIRE].

    Article  ADS  Google Scholar 

  27. J.R. Espinosa and R.-J. Zhang, Complete two loop dominant corrections to the mass of the lightest CP even Higgs boson in the minimal supersymmetric standard model, Nucl. Phys. B 586 (2000) 3 [hep-ph/0003246] [INSPIRE].

    Article  ADS  Google Scholar 

  28. A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, On the O(α 2 t ) two loop corrections to the neutral Higgs boson masses in the MSSM, Nucl. Phys. B 631 (2002) 195 [hep-ph/0112177] [INSPIRE].

    Article  ADS  Google Scholar 

  29. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [INSPIRE].

    Article  ADS  Google Scholar 

  30. S. Heinemeyer, W. Hollik and G. Weiglein, Electroweak precision observables in the minimal supersymmetric standard model, Phys. Rept. 425 (2006) 265 [hep-ph/0412214] [INSPIRE].

    Article  ADS  Google Scholar 

  31. B.C. Allanach, A. Djouadi, J.L. Kneur, W. Porod and P. Slavich, Precise determination of the neutral Higgs boson masses in the MSSM, JHEP 09 (2004) 044 [hep-ph/0406166] [INSPIRE].

    Article  ADS  Google Scholar 

  32. S.P. Martin, Two loop effective potential for a general renormalizable theory and softly broken supersymmetry, Phys. Rev. D 65 (2002) 116003 [hep-ph/0111209] [INSPIRE].

    ADS  Google Scholar 

  33. S.P. Martin, Two loop effective potential for the minimal supersymmetric standard model, Phys. Rev. D 66 (2002) 096001 [hep-ph/0206136] [INSPIRE].

    ADS  Google Scholar 

  34. S.P. Martin, Complete two loop effective potential approximation to the lightest Higgs scalar boson mass in supersymmetry, Phys. Rev. D 67 (2003) 095012 [hep-ph/0211366] [INSPIRE].

    ADS  Google Scholar 

  35. S.P. Martin, Evaluation of two loop selfenergy basis integrals using differential equations, Phys. Rev. D 68 (2003) 075002 [hep-ph/0307101] [INSPIRE].

    ADS  Google Scholar 

  36. S.P. Martin, Two loop scalar self energies in a general renormalizable theory at leading order in gauge couplings, Phys. Rev. D 70 (2004) 016005 [hep-ph/0312092] [INSPIRE].

    ADS  Google Scholar 

  37. S.P. Martin, Strong and Yukawa two-loop contributions to Higgs scalar boson self-energies and pole masses in supersymmetry, Phys. Rev. D 71 (2005) 016012 [hep-ph/0405022] [INSPIRE].

    ADS  Google Scholar 

  38. S.P. Martin, Two-loop scalar self-energies and pole masses in a general renormalizable theory with massless gauge bosons, Phys. Rev. D 71 (2005) 116004 [hep-ph/0502168] [INSPIRE].

    ADS  Google Scholar 

  39. S.P. Martin and D.G. Robertson, TSIL: a program for the calculation of two-loop self-energy integrals, Comput. Phys. Commun. 174 (2006) 133 [hep-ph/0501132] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  40. D.A. Demir, Effects of the supersymmetric phases on the neutral Higgs sector, Phys. Rev. D 60 (1999) 055006 [hep-ph/9901389] [INSPIRE].

    ADS  Google Scholar 

  41. S.Y. Choi, M. Drees and J.S. Lee, Loop corrections to the neutral Higgs boson sector of the MSSM with explicit CP-violation, Phys. Lett. B 481 (2000) 57 [hep-ph/0002287] [INSPIRE].

    Article  ADS  Google Scholar 

  42. T. Ibrahim and P. Nath, Corrections to the Higgs boson masses and mixings from chargino, W and charged Higgs exchange loops and large CP phases, Phys. Rev. D 63 (2001) 035009 [hep-ph/0008237] [INSPIRE].

    ADS  Google Scholar 

  43. T. Ibrahim and P. Nath, Neutralino exchange corrections to the Higgs boson mixings with explicit CP-violation, Phys. Rev. D 66 (2002) 015005 [hep-ph/0204092] [INSPIRE].

    ADS  Google Scholar 

  44. A. Pilaftsis and C.E.M. Wagner, Higgs bosons in the minimal supersymmetric standard model with explicit CP-violation, Nucl. Phys. B 553 (1999) 3 [hep-ph/9902371] [INSPIRE].

    Article  ADS  Google Scholar 

  45. M.S. Carena, J.R. Ellis, A. Pilaftsis and C.E.M. Wagner, Renormalization group improved effective potential for the MSSM Higgs sector with explicit CP-violation, Nucl. Phys. B 586 (2000) 92 [hep-ph/0003180] [INSPIRE].

    Article  ADS  Google Scholar 

  46. S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, The Higgs sector of the complex MSSM at two-loop order: QCD contributions, Phys. Lett. B 652 (2007) 300 [arXiv:0705.0746] [INSPIRE].

    Article  ADS  Google Scholar 

  47. M. Frank et al., The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach, JHEP 02 (2007) 047 [hep-ph/0611326] [INSPIRE].

    Article  ADS  Google Scholar 

  48. S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  49. T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, FeynHiggs 2.7, Nucl. Phys. Proc. Suppl. 205-206 (2010) 152 [arXiv:1007.0956] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  50. W. Hollik and S. Paßehr, Two-loop top-Yukawa-coupling corrections to the Higgs boson masses in the complex MSSM, Phys. Lett. B 733 (2014) 144 [arXiv:1401.8275] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  51. S. Dimopoulos and S.D. Thomas, Dynamical relaxation of the supersymmetric CP-violating phases, Nucl. Phys. B 465 (1996) 23 [hep-ph/9510220] [INSPIRE].

    Article  ADS  Google Scholar 

  52. R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].

    Article  ADS  Google Scholar 

  53. R.D. Peccei and H.R. Quinn, Constraints imposed by CP conservation in the presence of instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].

    ADS  Google Scholar 

  54. N. Baro, F. Boudjema and A. Semenov, Automatised full one-loop renormalisation of the MSSM. I. The Higgs sector, the issue of tan β and gauge invariance, Phys. Rev. D 78 (2008) 115003 [arXiv:0807.4668] [INSPIRE].

    ADS  Google Scholar 

  55. K.E. Williams, H. Rzehak and G. Weiglein, Higher order corrections to Higgs boson decays in the MSSM with complex parameters, Eur. Phys. J. C 71 (2011) 1669 [arXiv:1103.1335] [INSPIRE].

    Article  ADS  Google Scholar 

  56. W. Hollik et al., Renormalization of the minimal supersymmetric standard model, Nucl. Phys. B 639 (2002) 3 [hep-ph/0204350] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  57. T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  58. G. Weiglein, R. Mertig, R. Scharf and M. Bohm, Computer algebraic calculation of two loop selfenergies in the electroweak standard model, in New computing techniques in physics research II, La Londe-les-Maures France (1992), pg. 617 [INSPIRE].

  59. T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

    Article  ADS  Google Scholar 

  60. A. Freitas and D. Stöckinger, Gauge dependence and renormalization of tan β in the MSSM, Phys. Rev. D 66 (2002) 095014 [hep-ph/0205281] [INSPIRE].

    ADS  Google Scholar 

  61. M. Sperling, D. Stöckinger and A. Voigt, Renormalization of vacuum expectation values in spontaneously broken gauge theories, JHEP 07 (2013) 132 [arXiv:1305.1548] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. M. Sperling, D. Stöckinger and A. Voigt, Renormalization of vacuum expectation values in spontaneously broken gauge theories: two-loop results, JHEP 01 (2014) 068 [arXiv:1310.7629] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  63. T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, FeynHiggs: a program for the calculation of MSSM Higgs-boson observables — version 2.6.5, Comput. Phys. Commun. 180 (2009) 1426 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  64. T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, Higgs masses and more in the complex MSSM with FeynHiggs, arXiv:0710.4891 [INSPIRE].

  65. M. Frank et al., Charged Higgs boson mass of the MSSM in the Feynman diagrammatic approach, Phys. Rev. D 88 (2013) 055013 [arXiv:1306.1156] [INSPIRE].

    ADS  Google Scholar 

  66. T. Falk and K.A. Olive, Electric dipole moment constraints on phases in the constrained MSSM, Phys. Lett. B 375 (1996) 196 [hep-ph/9602299] [INSPIRE].

    Article  ADS  Google Scholar 

  67. T. Falk and K.A. Olive, More on electric dipole moment constraints on phases in the constrained MSSM, Phys. Lett. B 439 (1998) 71 [hep-ph/9806236] [INSPIRE].

    Article  ADS  Google Scholar 

  68. T. Ibrahim and P. Nath, The chromoelectric and purely gluonic operator contributions to the neutron electric dipole moment in N = 1 supergravity, Phys. Lett. B 418 (1998) 98 [hep-ph/9707409] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  69. T. Ibrahim and P. Nath, The neutron and the lepton EDMs in MSSM, large CP-violating phases and the cancellation mechanism, Phys. Rev. D 58 (1998) 111301 [Erratum ibid. D 60 (1999) 099902] [hep-ph/9807501] [INSPIRE].

  70. T. Ibrahim and P. Nath, Large CP phases and the cancellation mechanism in EDMs in SUSY, string and brane models, Phys. Rev. D 61 (2000) 093004 [hep-ph/9910553] [INSPIRE].

    ADS  Google Scholar 

  71. T. Ibrahim and P. Nath, The neutron and the electron electric dipole moment in N = 1 supergravity unification, Phys. Rev. D 57 (1998) 478 [Erratum ibid. D 58 (1998) 019901] [Erratum ibid. D 60 (1999) 079903] [Erratum ibid. D 60 (1999) 119901] [hep-ph/9708456] [INSPIRE].

  72. E. Accomando, R.L. Arnowitt and B. Dutta, Grand unification scale CP-violating phases and the electric dipole moment, Phys. Rev. D 61 (2000) 115003 [hep-ph/9907446] [INSPIRE].

    ADS  Google Scholar 

  73. A. Bartl, T. Gajdosik, W. Porod, P. Stöckinger and H. Stremnitzer, Electron and neutron electric dipole moments in the constrained MSSM, Phys. Rev. D 60 (1999) 073003 [hep-ph/9903402] [INSPIRE].

    ADS  Google Scholar 

  74. V.D. Barger et al., CP violating phases in SUSY, electric dipole moments and linear colliders, Phys. Rev. D 64 (2001) 056007 [hep-ph/0101106] [INSPIRE].

    ADS  Google Scholar 

  75. A. Masiero and L. Silvestrini, CP violation in low-energy SUSY, in Perspectives on supersymmetry, G.L. Kane ed., World Scientific, Singapore (1997), pg. 423 [hep-ph/9709242] [INSPIRE].

  76. M. Brhlik, G.J. Good and G.L. Kane, Electric dipole moments do not require the CP-violating phases of supersymmetry to be small, Phys. Rev. D 59 (1999) 115004 [hep-ph/9810457] [INSPIRE].

    ADS  Google Scholar 

  77. M. Brhlik, L.L. Everett, G.L. Kane and J.D. Lykken, A resolution to the supersymmetric CP problem with large soft phases via D-branes, Phys. Rev. Lett. 83 (1999) 2124 [hep-ph/9905215] [INSPIRE].

    Article  ADS  Google Scholar 

  78. G. Passarino and M.J.G. Veltman, One loop corrections for e + e − annihilation into μ + μ − in the Weinberg model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].

    Article  ADS  Google Scholar 

  79. G. Weiglein, R. Scharf and M. Böhm, Reduction of general two loop selfenergies to standard scalar integrals, Nucl. Phys. B 416 (1994) 606 [hep-ph/9310358] [INSPIRE].

    Article  ADS  Google Scholar 

  80. F.A. Berends and J.B. Tausk, On the numerical evaluation of scalar two loop selfenergy diagrams, Nucl. Phys. B 421 (1994) 456 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805, München, Germany

    Wolfgang Hollik & Sebastian Paßehr

Authors
  1. Wolfgang Hollik
    View author publications

    Search author on:PubMed Google Scholar

  2. Sebastian Paßehr
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Sebastian Paßehr.

Additional information

ArXiv ePrint: 1409.1687

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hollik, W., Paßehr, S. Higgs boson masses and mixings in the complex MSSM with two-loop top-Yukawa-coupling corrections. J. High Energ. Phys. 2014, 171 (2014). https://doi.org/10.1007/JHEP10(2014)171

Download citation

  • Received: 08 September 2014

  • Accepted: 17 October 2014

  • Published: 30 October 2014

  • DOI: https://doi.org/10.1007/JHEP10(2014)171

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Supersymmetry Phenomenology
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载