+
X
Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

The epsilon expansion of the O(N) model with line defect from conformal field theory

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 27 March 2023
  • Volume 2023, article number 203, (2023)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
The epsilon expansion of the O(N) model with line defect from conformal field theory
Download PDF
  • Tatsuma Nishioka  ORCID: orcid.org/0000-0002-9228-66451,
  • Yoshitaka Okuyama  ORCID: orcid.org/0000-0002-3105-44451,2 &
  • Soichiro Shimamori1 
  • 544 Accesses

  • 20 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We employ the axiomatic framework of Rychkov and Tan to investigate the critical O(N) vector model with a line defect in (4 − ϵ) dimensions. We assume the fixed point is described by defect conformal field theory and show that the critical value of the defect coupling to the bulk field is uniquely fixed without resorting to diagrammatic calculations. We also study various defect localized operators by the axiomatic method, where the analyticity of correlation functions plays a crucial role in determining the conformal dimensions of defect composite operators. In all cases, including operators with operator mixing, we reproduce the leading anomalous dimensions obtained by perturbative calculations.

Article PDF

Download to read the full article text

Similar content being viewed by others

Comments on epsilon expansion of the O(N) model with boundary

Article Open access 08 March 2023

Surface defects in the O(N) model

Article Open access 12 September 2023

Anomalous dimensions in the WF O(N) model with a monodromy line defect

Article Open access 12 March 2018

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Approximations and Expansions
  • Criticality
  • Crystal Field Theory
  • Field Theory and Polynomials
  • Operator Theory
  • Critical Theory
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. K.G. Wilson, Confinement of Quarks, Phys. Rev. D 10 (1974) 2445 [INSPIRE].

  2. G. ’t Hooft, On the Phase Transition Towards Permanent Quark Confinement, Nucl. Phys. B 138 (1978) 1 [INSPIRE].

  3. J. Kondo, Resistance Minimum in Dilute Magnetic Alloys, Prog. Theor. Phys. 32 (1964) 37 [INSPIRE].

  4. A.W.W. Ludwig and I. Affleck, Exact asymptotic three-dimensional, space and time dependent Green’s functions in the multichannel Kondo effect, Phys. Rev. Lett. 67 (1991) 3160 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. I. Affleck, Conformal field theory approach to the Kondo effect, Acta Phys. Polon. B 26 (1995) 1869 [cond-mat/9512099] [INSPIRE].

  6. A. Allais and S. Sachdev, Spectral function of a localized fermion coupled to the Wilson-Fisher conformal field theory, Phys. Rev. B 90 (2014) 035131 [arXiv:1406.3022] [INSPIRE].

  7. G. Cuomo, Z. Komargodski and M. Mezei, Localized magnetic field in the O(N) model, JHEP 02 (2022) 134 [arXiv:2112.10634] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. D. Poland, S. Rychkov and A. Vichi, The Conformal Bootstrap: Theory, Numerical Techniques, and Applications, Rev. Mod. Phys. 91 (2019) 015002 [arXiv:1805.04405] [INSPIRE].

  10. P. Liendo, L. Rastelli and B.C. van Rees, The Bootstrap Program for Boundary CFTd, JHEP 07 (2013) 113 [arXiv:1210.4258] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  11. A. Bissi, T. Hansen and A. Söderberg, Analytic Bootstrap for Boundary CFT, JHEP 01 (2019) 010 [arXiv:1808.08155] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. P. Dey and A. Söderberg, On analytic bootstrap for interface and boundary CFT, JHEP 07 (2021) 013 [arXiv:2012.11344] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. J. Padayasi et al., The extraordinary boundary transition in the 3d O(N) model via conformal bootstrap, SciPost Phys. 12 (2022) 190 [arXiv:2111.03071] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. F. Gliozzi, P. Liendo, M. Meineri and A. Rago, Boundary and Interface CFTs from the Conformal Bootstrap, JHEP 05 (2015) 036 [arXiv:1502.07217] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. A. Gimenez-Grau, Probing magnetic line defects with two-point functions, arXiv:2212.02520 [INSPIRE].

  16. A. Gimenez-Grau, E. Lauria, P. Liendo and P. van Vliet, Bootstrapping line defects with O(2) global symmetry, JHEP 11 (2022) 018 [arXiv:2208.11715] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. L. Bianchi, D. Bonomi and E. de Sabbata, Analytic bootstrap for the localized magnetic field, arXiv:2212.02524 [INSPIRE].

  18. S. Rychkov and Z.M. Tan, The ϵ-expansion from conformal field theory, J. Phys. A 48 (2015) 29FT01 [arXiv:1505.00963] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Basu and C. Krishnan, ϵ-expansions near three dimensions from conformal field theory, JHEP 11 (2015) 040 [arXiv:1506.06616] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. S. Ghosh, R.K. Gupta, K. Jaswin and A.A. Nizami, ϵ-expansion in the Gross-Neveu model from conformal field theory, JHEP 03 (2016) 174 [arXiv:1510.04887] [INSPIRE].

    Article  ADS  Google Scholar 

  21. A. Raju, ϵ-expansion in the Gross-Neveu CFT, JHEP 10 (2016) 097 [arXiv:1510.05287] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. K. Nii, Classical equation of motion and Anomalous dimensions at leading order, JHEP 07 (2016) 107 [arXiv:1605.08868] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. S. Giombi, V. Kirilin and E. Skvortsov, Notes on Spinning Operators in Fermionic CFT, JHEP 05 (2017) 041 [arXiv:1701.06997] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. S. Yamaguchi, The ϵ-expansion of the codimension two twist defect from conformal field theory, PTEP 2016 (2016) 091B01 [arXiv:1607.05551] [INSPIRE].

  25. S. Giombi and H. Khanchandani, CFT in AdS and boundary RG flows, JHEP 11 (2020) 118 [arXiv:2007.04955] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. A. Söderberg, Anomalous Dimensions in the WF O(N) Model with a Monodromy Line Defect, JHEP 03 (2018) 058 [arXiv:1706.02414] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. C.P. Herzog and V. Schaub, Fermions in boundary conformal field theory: crossing symmetry and E-expansion, JHEP 02 (2023) 129 [arXiv:2209.05511] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. T. Nishioka, Y. Okuyama and S. Shimamori, Comments on epsilon expansion of the O(N) model with boundary, JHEP 03 (2023) 051 [arXiv:2212.04078] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. S. Giombi, E. Helfenberger and H. Khanchandani, Line Defects in Fermionic CFTs, arXiv:2211.11073 [INSPIRE].

  30. M. Billò, V. Gonçalves, E. Lauria and M. Meineri, Defects in conformal field theory, JHEP 04 (2016) 091 [arXiv:1601.02883] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  31. A. Gadde, Conformal constraints on defects, JHEP 01 (2020) 038 [arXiv:1602.06354] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. A. Kapustin, Wilson-’t Hooft operators in four-dimensional gauge theories and S-duality, Phys. Rev. D 74 (2006) 025005 [hep-th/0501015] [INSPIRE].

  33. Y. Luke, The Special Functions and Their Approximations, volume 2 in Mathematics in Science and Engineering, Academic Press (1969).

  34. M. Lemos, P. Liendo, M. Meineri and S. Sarkar, Universality at large transverse spin in defect CFT, JHEP 09 (2018) 091 [arXiv:1712.08185] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. E. Lauria, P. Liendo, B.C. Van Rees and X. Zhao, Line and surface defects for the free scalar field, JHEP 01 (2021) 060 [arXiv:2005.02413] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. I. Burić and V. Schomerus, Defect Conformal Blocks from Appell Functions, JHEP 05 (2021) 007 [arXiv:2012.12489] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. A. Karch and Y. Sato, Conformal Manifolds with Boundaries or Defects, JHEP 07 (2018) 156 [arXiv:1805.10427] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning Conformal Correlators, JHEP 11 (2011) 071 [arXiv:1107.3554] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, Covariant expansion of the conformal four-point function, Nucl. Phys. B 49 (1972) 77 [INSPIRE].

  40. S. Ferrara, A.F. Grillo, R. Gatto and G. Parisi, Analyticity properties and asymptotic expansions of conformal covariant green’s functions, Nuovo Cim. A 19 (1974) 667 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  41. E.S. Fradkin and M.Y. Palchik, Conformal quantum field theory in D-dimensions, Springer Dordrecht (1996) [https://doi.org/10.1007/978-94-015-8757-0] [INSPIRE].

  42. D. Zwillinger, Table of Integrals, Series, and Products, Elsevier Science (2014).

Download references

Author information

Authors and Affiliations

  1. Department of Physics, Osaka University, Machikaneyama-Cho 1-1, Toyonaka, 560-0043, Japan

    Tatsuma Nishioka, Yoshitaka Okuyama & Soichiro Shimamori

  2. Department of Physics, Faculty of Science, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-0033, Japan

    Yoshitaka Okuyama

Authors
  1. Tatsuma Nishioka
    View author publications

    Search author on:PubMed Google Scholar

  2. Yoshitaka Okuyama
    View author publications

    Search author on:PubMed Google Scholar

  3. Soichiro Shimamori
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Soichiro Shimamori.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2212.04076

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishioka, T., Okuyama, Y. & Shimamori, S. The epsilon expansion of the O(N) model with line defect from conformal field theory. J. High Energ. Phys. 2023, 203 (2023). https://doi.org/10.1007/JHEP03(2023)203

Download citation

  • Received: 06 January 2023

  • Revised: 03 March 2023

  • Accepted: 07 March 2023

  • Published: 27 March 2023

  • Version of record: 27 March 2023

  • DOI: https://doi.org/10.1007/JHEP03(2023)203

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Renormalization Group
  • Scale and Conformal Symmetries
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载