+
X
Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

How arbitrary are perturbative calculations of the electroweak phase transition?

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 11 January 2023
  • Volume 2023, article number 50, (2023)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
How arbitrary are perturbative calculations of the electroweak phase transition?
Download PDF
  • Peter Athron1,2,
  • Csaba Balázs2,
  • Andrew Fowlie1,
  • Lachlan Morris2,
  • Graham White3 &
  • …
  • Yang Zhang4,5 
  • 636 Accesses

  • 37 Citations

  • 2 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We investigate the extent to which perturbative calculations of the electroweak phase transition are arbitrary and uncertain, owing to their gauge, renormalisation scale and scheme dependence, as well as treatments of the Goldstone catastrophe and daisy diagrams. Using the complete parameter space of the Standard Model extended by a real scalar singlet with a ℤ2 symmetry as a test, we explore the properties of the electroweak phase transition in general Rξ and covariant gauges, OS and \( \overline{\textrm{MS}} \) renormalisation schemes, and for common treatments of the Goldstone catastrophe and daisy diagrams. Reassuringly, we find that different renormalisation schemes and different treatments of the Goldstone catastrophe and daisy diagrams typically lead to only modest changes in predictions for the critical temperature and strength of the phase transition. On the other hand, the gauge and renormalisation scale dependence may be significant, and often impact the existence of the phase transition altogether.

Article PDF

Download to read the full article text

Similar content being viewed by others

Combining thermal resummation and gauge invariance for electroweak phase transition

Article Open access 09 November 2022

Perturbative effective field theory expansions for cosmological phase transitions

Article Open access 10 January 2024

A critical look at the electroweak phase transition

Article Open access 21 December 2020

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Criticality
  • Particle Physics
  • Phase Transition and Critical Phenomena
  • Phase Transitions and Multiphase Systems
  • Statistical Physics
  • Quantum Electrodynamics, Relativistic and Many-body Calculations
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. C. Caprini et al., Detecting gravitational waves from cosmological phase transitions with LISA: an update, JCAP 03 (2020) 024 [arXiv:1910.13125] [INSPIRE].

    Article  ADS  Google Scholar 

  2. M.J. Ramsey-Musolf, The electroweak phase transition: a collider target, JHEP 09 (2020) 179 [arXiv:1912.07189] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. J.L. Barrow et al., Theories and Experiments for Testable Baryogenesis Mechanisms: A Snowmass White Paper, arXiv:2203.07059 [INSPIRE].

  4. A.D. Sakharov, Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe, Sov. Phys. Usp. 34 (1991) 392 [Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32] [INSPIRE].

  5. K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, The Electroweak phase transition: A Nonperturbative analysis, Nucl. Phys. B 466 (1996) 189 [hep-lat/9510020] [INSPIRE].

    Article  ADS  Google Scholar 

  6. K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, Is there a hot electroweak phase transition at mH ≳ mW ?, Phys. Rev. Lett. 77 (1996) 2887 [hep-ph/9605288] [INSPIRE].

    Article  ADS  Google Scholar 

  7. K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, A Nonperturbative analysis of the finite T phase transition in SU(2) U(1) electroweak theory, Nucl. Phys. B 493 (1997) 413 [hep-lat/9612006] [INSPIRE].

    Article  ADS  Google Scholar 

  8. F. Csikor, Z. Fodor and J. Heitger, Endpoint of the hot electroweak phase transition, Phys. Rev. Lett. 82 (1999) 21 [hep-ph/9809291] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  9. M. D’Onofrio and K. Rummukainen, Standard model cross-over on the lattice, Phys. Rev. D 93 (2016) 025003 [arXiv:1508.07161] [INSPIRE].

    Article  ADS  Google Scholar 

  10. M. Pietroni, The Electroweak phase transition in a nonminimal supersymmetric model, Nucl. Phys. B 402 (1993) 27 [hep-ph/9207227] [INSPIRE].

    Article  ADS  Google Scholar 

  11. J.M. Cline and P.-A. Lemieux, Electroweak phase transition in two Higgs doublet models, Phys. Rev. D 55 (1997) 3873 [hep-ph/9609240] [INSPIRE].

    Article  ADS  Google Scholar 

  12. S.W. Ham, S.K. OH, C.M. Kim, E.J. Yoo and D. Son, Electroweak phase transition in a nonminimal supersymmetric model, Phys. Rev. D 70 (2004) 075001 [hep-ph/0406062] [INSPIRE].

    Article  ADS  Google Scholar 

  13. K. Funakubo, S. Tao and F. Toyoda, Phase transitions in the NMSSM, Prog. Theor. Phys. 114 (2005) 369 [hep-ph/0501052] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  14. V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf and G. Shaughnessy, Complex Singlet Extension of the Standard Model, Phys. Rev. D 79 (2009) 015018 [arXiv:0811.0393] [INSPIRE].

    Article  ADS  Google Scholar 

  15. D.J.H. Chung and A.J. Long, Electroweak Phase Transition in the munuSSM, Phys. Rev. D 81 (2010) 123531 [arXiv:1004.0942] [INSPIRE].

    Article  ADS  Google Scholar 

  16. J.R. Espinosa, T. Konstandin and F. Riva, Strong Electroweak Phase Transitions in the Standard Model with a Singlet, Nucl. Phys. B 854 (2012) 592 [arXiv:1107.5441] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  17. T.A. Chowdhury, M. Nemevšek, G. Senjanović and Y. Zhang, Dark Matter as the Trigger of Strong Electroweak Phase Transition, JCAP 02 (2012) 029 [arXiv:1110.5334] [INSPIRE].

    Article  ADS  Google Scholar 

  18. G. Gil, P. Chankowski and M. Krawczyk, Inert Dark Matter and Strong Electroweak Phase Transition, Phys. Lett. B 717 (2012) 396 [arXiv:1207.0084] [INSPIRE].

    Article  ADS  Google Scholar 

  19. M. Carena, G. Nardini, M. Quirós and C.E.M. Wagner, MSSM Electroweak Baryogenesis and LHC Data, JHEP 02 (2013) 001 [arXiv:1207.6330] [INSPIRE].

    Article  ADS  Google Scholar 

  20. J.M. No and M. Ramsey-Musolf, Probing the Higgs Portal at the LHC Through Resonant di-Higgs Production, Phys. Rev. D 89 (2014) 095031 [arXiv:1310.6035] [INSPIRE].

    Article  ADS  Google Scholar 

  21. G.C. Dorsch, S.J. Huber and J.M. No, A strong electroweak phase transition in the 2HDM after LHC8, JHEP 10 (2013) 029 [arXiv:1305.6610] [INSPIRE].

    Article  ADS  Google Scholar 

  22. D. Curtin, P. Meade and C.-T. Yu, Testing Electroweak Baryogenesis with Future Colliders, JHEP 11 (2014) 127 [arXiv:1409.0005] [INSPIRE].

    Article  ADS  Google Scholar 

  23. W. Huang, Z. Kang, J. Shu, P. Wu and J.M. Yang, New insights in the electroweak phase transition in the NMSSM, Phys. Rev. D 91 (2015) 025006 [arXiv:1405.1152] [INSPIRE].

    Article  ADS  Google Scholar 

  24. S. Profumo, M.J. Ramsey-Musolf, C.L. Wainwright and P. Winslow, Singlet-catalyzed electroweak phase transitions and precision Higgs boson studies, Phys. Rev. D 91 (2015) 035018 [arXiv:1407.5342] [INSPIRE].

    Article  ADS  Google Scholar 

  25. J. Kozaczuk, S. Profumo, L.S. Haskins and C.L. Wainwright, Cosmological Phase Transitions and their Properties in the NMSSM, JHEP 01 (2015) 144 [arXiv:1407.4134] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. M. Jiang, L. Bian, W. Huang and J. Shu, Impact of a complex singlet: Electroweak baryogenesis and dark matter, Phys. Rev. D 93 (2016) 065032 [arXiv:1502.07574] [INSPIRE].

    Article  ADS  Google Scholar 

  27. D. Curtin, P. Meade and H. Ramani, Thermal Resummation and Phase Transitions, Eur. Phys. J. C 78 (2018) 787 [arXiv:1612.00466] [INSPIRE].

    Article  ADS  Google Scholar 

  28. V. Vaskonen, Electroweak baryogenesis and gravitational waves from a real scalar singlet, Phys. Rev. D 95 (2017) 123515 [arXiv:1611.02073] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  29. G.C. Dorsch, S.J. Huber, T. Konstandin and J.M. No, A Second Higgs Doublet in the Early Universe: Baryogenesis and Gravitational Waves, JCAP 05 (2017) 052 [arXiv:1611.05874] [INSPIRE].

    Article  ADS  Google Scholar 

  30. P. Huang, A.J. Long and L.-T. Wang, Probing the Electroweak Phase Transition with Higgs Factories and Gravitational Waves, Phys. Rev. D 94 (2016) 075008 [arXiv:1608.06619] [INSPIRE].

    Article  ADS  Google Scholar 

  31. M. Chala, G. Nardini and I. Sobolev, Unified explanation for dark matter and electroweak baryogenesis with direct detection and gravitational wave signatures, Phys. Rev. D 94 (2016) 055006 [arXiv:1605.08663] [INSPIRE].

    Article  ADS  Google Scholar 

  32. P. Basler, M. Krause, M. Muhlleitner, J. Wittbrodt and A. Wlotzka, Strong First Order Electroweak Phase Transition in the CP-Conserving 2HDM Revisited, JHEP 02 (2017) 121 [arXiv:1612.04086] [INSPIRE].

    Article  ADS  Google Scholar 

  33. A. Beniwal, M. Lewicki, J.D. Wells, M. White and A.G. Williams, Gravitational wave, collider and dark matter signals from a scalar singlet electroweak baryogenesis, JHEP 08 (2017) 108 [arXiv:1702.06124] [INSPIRE].

    Article  ADS  Google Scholar 

  34. J. Bernon, L. Bian and Y. Jiang, A new insight into the phase transition in the early Universe with two Higgs doublets, JHEP 05 (2018) 151 [arXiv:1712.08430] [INSPIRE].

    Article  ADS  Google Scholar 

  35. G. Kurup and M. Perelstein, Dynamics of Electroweak Phase Transition In Singlet-Scalar Extension of the Standard Model, Phys. Rev. D 96 (2017) 015036 [arXiv:1704.03381] [INSPIRE].

    Article  ADS  Google Scholar 

  36. J.O. Andersen et al., Nonperturbative Analysis of the Electroweak Phase Transition in the Two Higgs Doublet Model, Phys. Rev. Lett. 121 (2018) 191802 [arXiv:1711.09849] [INSPIRE].

    Article  ADS  Google Scholar 

  37. C.-W. Chiang, M.J. Ramsey-Musolf and E. Senaha, Standard Model with a Complex Scalar Singlet: Cosmological Implications and Theoretical Considerations, Phys. Rev. D 97 (2018) 015005 [arXiv:1707.09960] [INSPIRE].

    Article  ADS  Google Scholar 

  38. G.C. Dorsch, S.J. Huber, K. Mimasu and J.M. No, The Higgs Vacuum Uplifted: Revisiting the Electroweak Phase Transition with a Second Higgs Doublet, JHEP 12 (2017) 086 [arXiv:1705.09186] [INSPIRE].

    Article  ADS  Google Scholar 

  39. A. Beniwal, M. Lewicki, M. White and A.G. Williams, Gravitational waves and electroweak baryogenesis in a global study of the extended scalar singlet model, JHEP 02 (2019) 183 [arXiv:1810.02380] [INSPIRE].

    Article  ADS  Google Scholar 

  40. S. Bruggisser, B. Von Harling, O. Matsedonskyi and G. Servant, Electroweak Phase Transition and Baryogenesis in Composite Higgs Models, JHEP 12 (2018) 099 [arXiv:1804.07314] [INSPIRE].

    Article  ADS  Google Scholar 

  41. P. Athron, C. Balázs, A. Fowlie, G. Pozzo, G. White and Y. Zhang, Strong first-order phase transitions in the NMSSM — a comprehensive survey, JHEP 11 (2019) 151 [arXiv:1908.11847] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  42. K. Kainulainen, V. Keus, L. Niemi, K. Rummukainen, T.V.I. Tenkanen and V. Vaskonen, On the validity of perturbative studies of the electroweak phase transition in the Two Higgs Doublet model, JHEP 06 (2019) 075 [arXiv:1904.01329] [INSPIRE].

    Article  ADS  Google Scholar 

  43. L. Bian, Y. Wu and K.-P. Xie, Electroweak phase transition with composite Higgs models: calculability, gravitational waves and collider searches, JHEP 12 (2019) 028 [arXiv:1909.02014] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  44. H.-L. Li, M. Ramsey-Musolf and S. Willocq, Probing a scalar singlet-catalyzed electroweak phase transition with resonant di-Higgs boson production in the 4b channel, Phys. Rev. D 100 (2019) 075035 [arXiv:1906.05289] [INSPIRE].

    Article  ADS  Google Scholar 

  45. C.-W. Chiang and B.-Q. Lu, First-order electroweak phase transition in a complex singlet model with ℤ3 symmetry, JHEP 07 (2020) 082 [arXiv:1912.12634] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  46. K.-P. Xie, L. Bian and Y. Wu, Electroweak baryogenesis and gravitational waves in a composite Higgs model with high dimensional fermion representations, JHEP 12 (2020) 047 [arXiv:2005.13552] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  47. N.F. Bell, M.J. Dolan, L.S. Friedrich, M.J. Ramsey-Musolf and R.R. Volkas, Two-Step Electroweak Symmetry-Breaking: Theory Meets Experiment, JHEP 05 (2020) 050 [arXiv:2001.05335] [INSPIRE].

    Article  ADS  Google Scholar 

  48. A. Papaefstathiou and G. White, The electro-weak phase transition at colliders: confronting theoretical uncertainties and complementary channels, JHEP 05 (2021) 099 [arXiv:2010.00597] [INSPIRE].

    Article  ADS  Google Scholar 

  49. A.V. Kotwal, M.J. Ramsey-Musolf, J.M. No and P. Winslow, Singlet-catalyzed electroweak phase transitions in the 100 TeV frontier, Phys. Rev. D 94 (2016) 035022 [arXiv:1605.06123] [INSPIRE].

    Article  ADS  Google Scholar 

  50. H.H. Patel and M.J. Ramsey-Musolf, Baryon Washout, Electroweak Phase Transition, and Perturbation Theory, JHEP 07 (2011) 029 [arXiv:1101.4665] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  51. S.P. Martin, Two Loop Effective Potential for a General Renormalizable Theory and Softly Broken Supersymmetry, Phys. Rev. D 65 (2002) 116003 [hep-ph/0111209] [INSPIRE].

    Article  ADS  Google Scholar 

  52. D.G.C. McKeon, Renormalization Scheme Dependence with Renormalization Group Summation, Phys. Rev. D 92 (2015) 045031 [arXiv:1503.03823] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  53. S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

  54. P.B. Arnold, Phase transition temperatures at next-to-leading order, Phys. Rev. D 46 (1992) 2628 [hep-ph/9204228] [INSPIRE].

    Article  ADS  Google Scholar 

  55. O. Gould, S. Güyer and K. Rummukainen, First-order electroweak phase transitions: A nonperturbative update, Phys. Rev. D 106 (2022) 114507 [arXiv:2205.07238] [INSPIRE].

    Article  ADS  Google Scholar 

  56. P. Schicho, T.V.I. Tenkanen and G. White, Combining thermal resummation and gauge invariance for electroweak phase transition, JHEP 11 (2022) 047 [arXiv:2203.04284] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. A. Ekstedt, Convergence of the nucleation rate for first-order phase transitions, Phys. Rev. D 106 (2022) 095026 [arXiv:2205.05145] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  58. A. Ekstedt, O. Gould and J. Löfgren, Radiative first-order phase transitions to next-to-next-to-leading order, Phys. Rev. D 106 (2022) 036012 [arXiv:2205.07241] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  59. A. Ekstedt, P. Schicho and T.V.I. Tenkanen, DRalgo: a package for effective field theory approach for thermal phase transitions, arXiv:2205.08815 [INSPIRE].

  60. M. Garny and T. Konstandin, On the gauge dependence of vacuum transitions at finite temperature, JHEP 07 (2012) 189 [arXiv:1205.3392] [INSPIRE].

    Article  ADS  Google Scholar 

  61. K. Fuyuto and E. Senaha, Improved sphaleron decoupling condition and the Higgs coupling constants in the real singlet-extended standard model, Phys. Rev. D 90 (2014) 015015 [arXiv:1406.0433] [INSPIRE].

    Article  ADS  Google Scholar 

  62. K. Fuyuto and E. Senaha, Sphaleron and critical bubble in the scale invariant two Higgs doublet model, Phys. Lett. B 747 (2015) 152 [arXiv:1504.04291] [INSPIRE].

    Article  ADS  Google Scholar 

  63. P. Athron, C. Balázs, A. Fowlie and Y. Zhang, PhaseTracer: tracing cosmological phases and calculating transition properties, Eur. Phys. J. C 80 (2020) 567 [arXiv:2003.02859] [INSPIRE].

    Article  ADS  Google Scholar 

  64. C.-W. Chiang and E. Senaha, On gauge dependence of gravitational waves from a first-order phase transition in classical scale-invariant U(1)′ models, Phys. Lett. B 774 (2017) 489 [arXiv:1707.06765] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. S. ArunaSalam and M.J. Ramsey-Musolf, Tunneling potentials for the tunneling action: gauge invariance, JHEP 08 (2022) 138 [arXiv:2105.07588] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. C.-W. Chiang, Y.-T. Li and E. Senaha, Revisiting electroweak phase transition in the standard model with a real singlet scalar, Phys. Lett. B 789 (2019) 154 [arXiv:1808.01098] [INSPIRE].

    Article  ADS  Google Scholar 

  67. D. Croon, O. Gould, P. Schicho, T.V.I. Tenkanen and G. White, Theoretical uncertainties for cosmological first-order phase transitions, JHEP 04 (2021) 055 [arXiv:2009.10080] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  68. O. Gould and T.V.I. Tenkanen, On the perturbative expansion at high temperature and implications for cosmological phase transitions, JHEP 06 (2021) 069 [arXiv:2104.04399] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  69. R. Jackiw, Functional evaluation of the effective potential, Phys. Rev. D 9 (1974) 1686 [INSPIRE].

  70. L. Dolan and R. Jackiw, Symmetry Behavior at Finite Temperature, Phys. Rev. D 9 (1974) 3320 [INSPIRE].

  71. S. Weinberg, Gauge and Global Symmetries at High Temperature, Phys. Rev. D 9 (1974) 3357 [INSPIRE].

  72. D.A. Kirzhnits and A.D. Linde, A Relativistic phase transition, Zh. Eksp. Teor. Fiz. 67 (1974) 1263 [INSPIRE].

  73. A. Ekstedt, Higher-order corrections to the bubble-nucleation rate at finite temperature, Eur. Phys. J. C 82 (2022) 173 [arXiv:2104.11804] [INSPIRE].

    Article  ADS  Google Scholar 

  74. J. Elias-Miro, J.R. Espinosa and T. Konstandin, Taming Infrared Divergences in the Effective Potential, JHEP 08 (2014) 034 [arXiv:1406.2652] [INSPIRE].

    Article  ADS  Google Scholar 

  75. S.P. Martin, Taming the Goldstone contributions to the effective potential, Phys. Rev. D 90 (2014) 016013 [arXiv:1406.2355] [INSPIRE].

    Article  ADS  Google Scholar 

  76. J.R. Espinosa and T. Konstandin, Resummation of Goldstone Infrared Divergences: A Proof to All Orders, Phys. Rev. D 97 (2018) 056020 [arXiv:1712.08068] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  77. P. Ghorbani, Vacuum structure and electroweak phase transition in singlet scalar dark matter, Phys. Dark Univ. 33 (2021) 100861 [arXiv:2010.15708] [INSPIRE].

    Article  Google Scholar 

  78. Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01 [INSPIRE].

  79. K. Fujikawa, B.W. Lee and A.I. Sanda, Generalized Renormalizable Gauge Formulation of Spontaneously Broken Gauge Theories, Phys. Rev. D 6 (1972) 2923 [INSPIRE].

  80. S.P. Martin and H.H. Patel, Two-loop effective potential for generalized gauge fixing, Phys. Rev. D 98 (2018) 076008 [arXiv:1808.07615] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  81. M. Laine, The Two loop effective potential of the 3-D SU(2) Higgs model in a general covariant gauge, Phys. Lett. B 335 (1994) 173 [hep-ph/9406268] [INSPIRE].

    Article  ADS  Google Scholar 

  82. A.J. Andreassen, Gauge Dependence of the Quantum Field Theory Effective Potential, MSc Thesis, Norwegian University of Science and Technology (2013) [INSPIRE].

  83. A. Andreassen, W. Frost and M.D. Schwartz, Consistent Use of the Standard Model Effective Potential, Phys. Rev. Lett. 113 (2014) 241801 [arXiv:1408.0292] [INSPIRE].

    Article  ADS  Google Scholar 

  84. A. Andreassen, W. Frost and M.D. Schwartz, Consistent Use of Effective Potentials, Phys. Rev. D 91 (2015) 016009 [arXiv:1408.0287] [INSPIRE].

    Article  ADS  Google Scholar 

  85. N.K. Nielsen, On the Gauge Dependence of Spontaneous Symmetry Breaking in Gauge Theories, Nucl. Phys. B 101 (1975) 173 [INSPIRE].

  86. J. Fleischer and F. Jegerlehner, Radiative Corrections to Higgs Decays in the Extended Weinberg-Salam Model, Phys. Rev. D 23 (1981) 2001 [INSPIRE].

  87. J. Braathen, M.D. Goodsell, S. Paßehr and E. Pinsard, Expectation management, Eur. Phys. J. C 81 (2021) 498 [arXiv:2103.06773] [INSPIRE].

    Article  ADS  Google Scholar 

  88. A. Ekstedt and J. Löfgren, On the relationship between gauge dependence and IR divergences in the n-expansion of the effective potential, JHEP 01 (2019) 226 [arXiv:1810.01416] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  89. G.W. Anderson and L.J. Hall, The Electroweak phase transition and baryogenesis, Phys. Rev. D 45 (1992) 2685 [INSPIRE].

  90. A. Megevand and A.D. Sanchez, Supercooling and phase coexistence in cosmological phase transitions, Phys. Rev. D 77 (2008) 063519 [arXiv:0712.1031] [INSPIRE].

    Article  ADS  Google Scholar 

  91. A. Ashoorioon and T. Konstandin, Strong electroweak phase transitions without collider traces, JHEP 07 (2009) 086 [arXiv:0904.0353] [INSPIRE].

    Article  ADS  Google Scholar 

  92. A. Megevand, F.A. Membiela and A.D. Sanchez, Lower bound on the electroweak wall velocity from hydrodynamic instability, JCAP 03 (2015) 051 [arXiv:1412.8064] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  93. T. Alanne, T. Hugle, M. Platscher and K. Schmitz, A fresh look at the gravitational-wave signal from cosmological phase transitions, JHEP 03 (2020) 004 [arXiv:1909.11356] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  94. S. AbdusSalam, M.J. Kazemi and L. Kalhor, Upper limit on first-order electroweak phase transition strength, Int. J. Mod. Phys. A 36 (2021) 2150024 [arXiv:2001.05973] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  95. K.-P. Xie, Lepton-mediated electroweak baryogenesis, gravitational waves and the 4τ final state at the collider, JHEP 02 (2021) 090 [Erratum ibid. 8 (2022) 052] [arXiv:2011.04821] [INSPIRE].

  96. A. Azatov, G. Barni, S. Chakraborty, M. Vanvlasselaer and W. Yin, Ultra-relativistic bubbles from the simplest Higgs portal and their cosmological consequences, JHEP 10 (2022) 017 [arXiv:2207.02230] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  97. J. Ellis, M. Lewicki, M. Merchand, J.M. No and M. Zych, The Scalar Singlet Extension of the Standard Model: Gravitational Waves versus Baryogenesis, arXiv:2210.16305 [INSPIRE].

  98. R.R. Parwani, Resummation in a hot scalar field theory, Phys. Rev. D 45 (1992) 4695 [Erratum ibid. 48 (1993) 5965] [hep-ph/9204216] [INSPIRE].

  99. M. Dine, R.G. Leigh, P. Huet, A.D. Linde and D.A. Linde, Comments on the electroweak phase transition, Phys. Lett. B 283 (1992) 319 [hep-ph/9203201] [INSPIRE].

    Article  ADS  Google Scholar 

  100. M. Dine, R.G. Leigh, P.Y. Huet, A.D. Linde and D.A. Linde, Towards the theory of the electroweak phase transition, Phys. Rev. D 46 (1992) 550 [hep-ph/9203203] [INSPIRE].

    Article  ADS  Google Scholar 

  101. P.B. Arnold and O. Espinosa, The Effective potential and first order phase transitions: Beyond leading-order, Phys. Rev. D 47 (1993) 3546 [Erratum ibid. 50 (1994) 6662] [hep-ph/9212235] [INSPIRE].

  102. P.M. Schicho, T.V.I. Tenkanen and J. Österman, Robust approach to thermal resummation: Standard Model meets a singlet, JHEP 06 (2021) 130 [arXiv:2102.11145] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  103. L. Niemi, P. Schicho and T.V.I. Tenkanen, Singlet-assisted electroweak phase transition at two loops, Phys. Rev. D 103 (2021) 115035 [arXiv:2103.07467] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  104. P. Athron, J.-h. Park, D. Stöckinger and A. Voigt, FlexibleSUSY — A spectrum generator generator for supersymmetric models, Comput. Phys. Commun. 190 (2015) 139 [arXiv:1406.2319] [INSPIRE].

    Article  ADS  Google Scholar 

  105. P. Athron et al., FlexibleSUSY 2.0: Extensions to investigate the phenomenology of SUSY and non-SUSY models, Comput. Phys. Commun. 230 (2018) 145 [arXiv:1710.03760] [INSPIRE].

    Article  ADS  Google Scholar 

  106. F. Staub, From Superpotential to Model Files for FeynArts and CalcHep/CompHEP, Comput. Phys. Commun. 181 (2010) 1077 [arXiv:0909.2863] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  107. F. Staub, Automatic Calculation of supersymmetric Renormalization Group Equations and Self Energies, Comput. Phys. Commun. 182 (2011) 808 [arXiv:1002.0840] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  108. F. Staub, SARAH 3.2: Dirac Gauginos, UFO output, and more, Comput. Phys. Commun. 184 (2013) 1792 [arXiv:1207.0906] [INSPIRE].

    Article  ADS  Google Scholar 

  109. F. Staub, SARAH 4: A tool for (not only SUSY) model builders, Comput. Phys. Commun. 185 (2014) 1773 [arXiv:1309.7223] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  110. B.C. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  111. B.C. Allanach, P. Athron, L.C. Tunstall, A. Voigt and A.G. Williams, Next-to-Minimal SOFTSUSY, Comput. Phys. Commun. 185 (2014) 2322 [Erratum ibid. 250 (2020) 107044] [arXiv:1311.7659] [INSPIRE].

  112. C.P.D. Harman and S.J. Huber, Does zero temperature decide on the nature of the electroweak phase transition?, JHEP 06 (2016) 005 [arXiv:1512.05611] [INSPIRE].

    Article  ADS  Google Scholar 

  113. E. Senaha, Radiative Corrections to Triple Higgs Coupling and Electroweak Phase Transition: Beyond One-loop Analysis, Phys. Rev. D 100 (2019) 055034 [arXiv:1811.00336] [INSPIRE].

    Article  ADS  Google Scholar 

  114. T. Biekötter, S. Heinemeyer, J.M. No, M.O. Olea and G. Weiglein, Fate of electroweak symmetry in the early Universe: Non-restoration and trapped vacua in the N2HDM, JCAP 06 (2021) 018 [arXiv:2103.12707] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  115. M. Laine and A. Vuorinen, Basics of Thermal Field Theory, vol. 925, Springer (2016) [doi:10.1007/978-3-319-31933-9] [arXiv:1701.01554] [INSPIRE].

  116. A. Fowlie, A fast C++ implementation of thermal functions, Comput. Phys. Commun. 228 (2018) 264 [arXiv:1802.02720] [INSPIRE].

    Article  ADS  Google Scholar 

  117. C.L. Wainwright, CosmoTransitions: Computing Cosmological Phase Transition Temperatures and Bubble Profiles with Multiple Fields, Comput. Phys. Commun. 183 (2012) 2006 [arXiv:1109.4189] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing, 210023, Jiangsu, China

    Peter Athron & Andrew Fowlie

  2. School of Physics and Astronomy, Monash University, Melbourne, Victoria, 3800, Australia

    Peter Athron, Csaba Balázs & Lachlan Morris

  3. Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba, 277-8583, Japan

    Graham White

  4. School of Physics, Zhengzhou University, Zhengzhou, 450000, China

    Yang Zhang

  5. CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, China

    Yang Zhang

Authors
  1. Peter Athron
    View author publications

    Search author on:PubMed Google Scholar

  2. Csaba Balázs
    View author publications

    Search author on:PubMed Google Scholar

  3. Andrew Fowlie
    View author publications

    Search author on:PubMed Google Scholar

  4. Lachlan Morris
    View author publications

    Search author on:PubMed Google Scholar

  5. Graham White
    View author publications

    Search author on:PubMed Google Scholar

  6. Yang Zhang
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Yang Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2208.01319

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athron, P., Balázs, C., Fowlie, A. et al. How arbitrary are perturbative calculations of the electroweak phase transition?. J. High Energ. Phys. 2023, 50 (2023). https://doi.org/10.1007/JHEP01(2023)050

Download citation

  • Received: 10 August 2022

  • Revised: 13 December 2022

  • Accepted: 21 December 2022

  • Published: 11 January 2023

  • Version of record: 11 January 2023

  • DOI: https://doi.org/10.1007/JHEP01(2023)050

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Phase Transitions in the Early Universe
  • Other Weak Scale BSM Models
  • Specific BSM Phenomenology
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载