+
X
Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

A microscopic model of black hole evaporation in two dimensions

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 25 August 2023
  • Volume 2023, article number 171, (2023)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
A microscopic model of black hole evaporation in two dimensions
Download PDF
  • Adwait Gaikwad1,2,
  • Anurag Kaushal  ORCID: orcid.org/0000-0002-9028-44512,3,
  • Gautam Mandal  ORCID: orcid.org/0000-0002-8065-89312 &
  • …
  • Spenta R. Wadia3 
  • 463 Accesses

  • 1 Citation

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We present a microscopic model of black hole (BH) ‘evaporation’ in asymptotically AdS2 spacetimes dual to the low energy sector of the SYK model. To describe evaporation, the SYK model is coupled to a bath comprising of Nf free scalar fields Φi. We consider a linear combination of couplings of the form OSY K(t)∑iΦi(0, t), where OSY K involves products of the Kourkoulou-Maldacena operator \( iJ/N{\sum}_{k=1}^{N/2}{s}_k^{\prime }{\psi}_{2k-1}(t){\psi}_{2k}(t) \) specified by a spin vector s′. We discuss the time evolution of a product of (i) a pure state of the SYK system, namely a BH microstate characterized by a spin vector s and an effective BH temperature TBH, and (ii) a Calabrese-Cardy state of the bath characterized by an effective temperature Tbath. We take Tbath ≪ TBH, and TBH much lower than the characteristic UV scale J of the SYK model, allowing a description in terms of the time reparameterization mode. Tracing over the bath degrees of freedom leads to a Feynman-Vernon type effective action for the SYK model, which we study in the low energy limit. The leading large N behaviour of the time reparameterization mode is found, as well as the \( O\left(1/\sqrt{N}\right) \) fluctuations. The latter are characterized by a non-Markovian non-linear stochastic differential equation with non-local Gaussian noise. In a restricted range of couplings, we find two classes of solutions which asymptotically approach (a) a BH at a lower temperature, and (b) a horizonless geometry. We identify these with partial and complete BH evaporation, respectively. Importantly, the asymptotic solution in both cases involves the scalar product of the spin vectors s.s′, which carries some information about the initial state. By repeating the dynamical process O(N2) times with different choices of the spin vector s′, one can in principle reconstruct the initial BH microstate.

Article PDF

Download to read the full article text

Similar content being viewed by others

Universal constraints on energy flow and SYK thermalization

Article Open access 05 August 2024

Rescuing a black hole in the large-q coupled SYK model

Article Open access 13 April 2021

Replica wormhole and information retrieval in the SYK model coupled to Majorana chains

Article Open access 19 June 2020

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Bose-Einstein Condensate
  • General Relativity
  • Quantum Cascade Lasers
  • Stochastic Differential Equations
  • Stochastic Ordinary Differential Equations
  • Waves, instabilities and nonlinear plasma dynamics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].

  2. A. Kitaev, A simple model of quantum holography, talks at KITP, 7 April and 27 May 2015.

  3. J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  4. S. Sachdev, Bekenstein-Hawking Entropy and Strange Metals, Phys. Rev. X 5 (2015) 041025 [arXiv:1506.05111] [INSPIRE].

    Google Scholar 

  5. J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].

  6. G. Sárosi, AdS2 holography and the SYK model, PoS Modave2017 (2018) 001 [arXiv:1711.08482] [INSPIRE].

  7. D.A. Trunin, Pedagogical introduction to the Sachdev–Ye–Kitaev model and two-dimensional dilaton gravity, Usp. Fiz. Nauk 191 (2021) 225 [arXiv:2002.12187] [INSPIRE].

    Google Scholar 

  8. D. Stanford and E. Witten, Fermionic Localization of the Schwarzian Theory, JHEP 10 (2017) 008 [arXiv:1703.04612] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  9. L.V. Iliesiu and G.J. Turiaci, The statistical mechanics of near-extremal black holes, JHEP 05 (2021) 145 [arXiv:2003.02860] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  10. J.D. Bekenstein, Black holes and the second law, Lett. Nuovo Cim. 4 (1972) 737 [INSPIRE].

  11. J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].

  12. S.W. Hawking, Black hole explosions, Nature 248 (1974) 30 [INSPIRE].

  13. S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].

  14. A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  15. J.R. David, G. Mandal and S.R. Wadia, Microscopic formulation of black holes in string theory, Phys. Rept. 369 (2002) 549 [hep-th/0203048] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  16. J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  17. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  18. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  19. E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  20. G. Penington, Entanglement Wedge Reconstruction and the Information Paradox, JHEP 09 (2020) 002 [arXiv:1905.08255] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  21. A. Almheiri, N. Engelhardt, D. Marolf and H. Maxfield, The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole, JHEP 12 (2019) 063 [arXiv:1905.08762] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  22. A. Almheiri, R. Mahajan, J. Maldacena and Y. Zhao, The Page curve of Hawking radiation from semiclassical geometry, JHEP 03 (2020) 149 [arXiv:1908.10996] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  23. A. Almheiri, R. Mahajan and J. Maldacena, Islands outside the horizon, arXiv:1910.11077 [INSPIRE].

  24. M. Rozali et al., Information radiation in BCFT models of black holes, JHEP 05 (2020) 004 [arXiv:1910.12836] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  25. G. Penington, S.H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole interior, JHEP 03 (2022) 205 [arXiv:1911.11977] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  26. A. Almheiri et al., Replica Wormholes and the Entropy of Hawking Radiation, JHEP 05 (2020) 013 [arXiv:1911.12333] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  27. H.Z. Chen et al., Evaporating Black Holes Coupled to a Thermal Bath, JHEP 01 (2021) 065 [arXiv:2007.11658] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  28. A. Almheiri et al., The entropy of Hawking radiation, Rev. Mod. Phys. 93 (2021) 035002 [arXiv:2006.06872] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  29. H. Geng and A. Karch, Massive islands, JHEP 09 (2020) 121 [arXiv:2006.02438] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  30. H. Geng et al., Inconsistency of islands in theories with long-range gravity, JHEP 01 (2022) 182 [arXiv:2107.03390] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  31. C. Krishnan, Critical Islands, JHEP 01 (2021) 179 [arXiv:2007.06551] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  32. K. Ghosh and C. Krishnan, Dirichlet baths and the not-so-fine-grained Page curve, JHEP 08 (2021) 119 [arXiv:2103.17253] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  33. C. Krishnan, V. Patil and J. Pereira, Page Curve and the Information Paradox in Flat Space, arXiv:2005.02993 [INSPIRE].

  34. C. Krishnan and V. Mohan, Interpreting the Bulk Page Curve: A Vestige of Locality on Holographic Screens, arXiv:2112.13783 [INSPIRE].

  35. S. Raju, Failure of the split property in gravity and the information paradox, Class. Quant. Grav. 39 (2022) 064002 [arXiv:2110.05470] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  36. J. De Vuyst and T.G. Mertens, Operational islands and black hole dissipation in JT gravity, JHEP 01 (2023) 027 [arXiv:2207.03351] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  37. E. Bahiru et al., State-dressed local operators in AdS/CFT, arXiv:2209.06845 [INSPIRE].

  38. A. Almheiri, A. Milekhin and B. Swingle, Universal Constraints on Energy Flow and SYK Thermalization, arXiv:1912.04912 [INSPIRE].

  39. J. Maldacena and A. Milekhin, SYK wormhole formation in real time, JHEP 04 (2021) 258 [arXiv:1912.03276] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  40. Y. Chen, X.-L. Qi and P. Zhang, Replica wormhole and information retrieval in the SYK model coupled to Majorana chains, JHEP 06 (2020) 121 [arXiv:2003.13147] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  41. C. Teitelboim, Gravitation and Hamiltonian Structure in Two Space-Time Dimensions, Phys. Lett. B 126 (1983) 41 [INSPIRE].

  42. R. Jackiw, Lower Dimensional Gravity, Nucl. Phys. B 252 (1985) 343 [INSPIRE].

  43. I. Kourkoulou and J. Maldacena, Pure states in the SYK model and nearly-AdS2 gravity, arXiv:1707.02325 [INSPIRE].

  44. J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS2 backreaction and holography, JHEP 07 (2016) 139 [arXiv:1606.03438] [INSPIRE].

    ADS  MATH  Google Scholar 

  45. P. Calabrese and J. Cardy, Quantum Quenches in Extended Systems, J. Stat. Mech. 0706 (2007) P06008 [arXiv:0704.1880] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  46. J. Cardy, Thermalization and Revivals after a Quantum Quench in Conformal Field Theory, Phys. Rev. Lett. 112 (2014) 220401 [arXiv:1403.3040] [INSPIRE].

    ADS  Google Scholar 

  47. A. Dhar et al., Gravitational collapse in SYK models and Choptuik-like phenomenon, JHEP 11 (2019) 067 [arXiv:1812.03979] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  48. K. Papadodimas and S. Raju, State-Dependent Bulk-Boundary Maps and Black Hole Complementarity, Phys. Rev. D 89 (2014) 086010 [arXiv:1310.6335] [INSPIRE].

    ADS  Google Scholar 

  49. K. Papadodimas and S. Raju, Remarks on the necessity and implications of state-dependence in the black hole interior, Phys. Rev. D 93 (2016) 084049 [arXiv:1503.08825] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  50. A.R. Brown, H. Gharibyan, G. Penington and L. Susskind, The Python’s Lunch: geometric obstructions to decoding Hawking radiation, JHEP 08 (2020) 121 [arXiv:1912.00228] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  51. G. Mandal and S.R. Wadia, Black hole geometry around an elementary BPS string state, Phys. Lett. B 372 (1996) 34 [hep-th/9511218] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  52. A. Dhar, G. Mandal and S.R. Wadia, Absorption versus decay of black holes in string theory and T symmetry, Phys. Lett. B 388 (1996) 51 [hep-th/9605234] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  53. P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. 0504 (2005) P04010 [cond-mat/0503393] [INSPIRE].

  54. D. Bagrets, A. Altland and A. Kamenev, Sachdev–Ye–Kitaev model as Liouville quantum mechanics, Nucl. Phys. B 911 (2016) 191 [arXiv:1607.00694] [INSPIRE].

    ADS  MATH  Google Scholar 

  55. A. Almheiri, A. Mousatov and M. Shyani, Escaping the interiors of pure boundary-state black holes, JHEP 02 (2023) 024 [arXiv:1803.04434] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  56. G. Mandal, R. Sinha and N. Sorokhaibam, Thermalization with chemical potentials, and higher spin black holes, JHEP 08 (2015) 013 [arXiv:1501.04580] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  57. G. Mandal, S. Paranjape and N. Sorokhaibam, Thermalization in 2D critical quench and UV/IR mixing, JHEP 01 (2018) 027 [arXiv:1512.02187] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  58. P. Banerjee, A. Gaikwad, A. Kaushal and G. Mandal, Quantum quench and thermalization to GGE in arbitrary dimensions and the odd-even effect, JHEP 09 (2020) 027 [arXiv:1910.02404] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  59. J.V. Rocha, Evaporation of large black holes in AdS: Coupling to the evaporon, JHEP 08 (2008) 075 [arXiv:0804.0055] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  60. A. Kamenev, Field theory of non-equilibrium systems, Cambridge University Press (2011).

  61. F.M. Haehl, R. Loganayagam and M. Rangamani, Schwinger-Keldysh formalism. Part I: BRST symmetries and superspace, JHEP 06 (2017) 069 [arXiv:1610.01940] [INSPIRE].

  62. R.F. Pawula, Generalizations and extensions of the Fokker-Planck-Kolmogorov equations, IEEE Trans. Inf. Theory 13 (1967) 33.

  63. H. Risken and H.D. Vollmer, On the application of truncated generalized Fokker-Planck equations, Zeitschrift für Physik B Condensed Matter 35 (1979) 313.

  64. J.D. Jackson, Classical Electrodynamics, Wiley (2012).

  65. A.O. Caldeira and A.J. Leggett, Path integral approach to quantum Brownian motion, Physica A 121 (1983) 587 [INSPIRE].

  66. P. Gao, D.L. Jafferis and A.C. Wall, Traversable Wormholes via a Double Trace Deformation, JHEP 12 (2017) 151 [arXiv:1608.05687] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  67. J. Maldacena, D. Stanford and Z. Yang, Diving into traversable wormholes, Fortsch. Phys. 65 (2017) 1700034 [arXiv:1704.05333] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  68. J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491 [INSPIRE].

  69. R.K. Pathria and P.D. Beale, Statistical Mechanics, Butterworth-Heinemann (2011).

  70. O. Contreras-Vergara, N. Lucero-Azuara, N. Sánchez-Salas and J.I. Jiménez-Aquino, Harmonic oscillator Brownian motion: Langevin approach revisited, Revista Mexicana de Física E 18 (2021) 97.

  71. G. Mandal, P. Nayak and S.R. Wadia, Coadjoint orbit action of Virasoro group and two-dimensional quantum gravity dual to SYK/tensor models, JHEP 11 (2017) 046 [arXiv:1702.04266] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  72. M. Banados, Three-dimensional quantum geometry and black holes, AIP Conf. Proc. 484 (1999) 147 [hep-th/9901148] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank Soumyadeep Chaudhuri, R Loganayagam, Juan Maldacena, Shiraz Minwalla, Kyriakos Papadodimas, Onkar Parrikar, Suvrat Raju, Subir Sachdev, Ashoke Sen, Ritam Sinha, Nilakash Sorokhaibam, Sandip Trivedi and Neha Wadia for discussions and comments during the course of this work. S.R.W. would like to thank the support of the Infosys Foundation Homi Bhabha Chair at ICTS-TIFR. A.K. and G.M. acknowledge support from the Quantum Space-Time Endowment of the Infosys Science Foundation.

Author information

Authors and Affiliations

  1. School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel

    Adwait Gaikwad

  2. Department of Theoretical Physics, Tata Institute of Fundamental Research, Mumbai, 400005, India

    Adwait Gaikwad, Anurag Kaushal & Gautam Mandal

  3. International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Shivakote, Bengaluru, 560089, India

    Anurag Kaushal & Spenta R. Wadia

Authors
  1. Adwait Gaikwad
    View author publications

    Search author on:PubMed Google Scholar

  2. Anurag Kaushal
    View author publications

    Search author on:PubMed Google Scholar

  3. Gautam Mandal
    View author publications

    Search author on:PubMed Google Scholar

  4. Spenta R. Wadia
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Anurag Kaushal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2210.15579

Part of the work was completed when the author was at b. (Adwait Gaikwad)

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaikwad, A., Kaushal, A., Mandal, G. et al. A microscopic model of black hole evaporation in two dimensions. J. High Energ. Phys. 2023, 171 (2023). https://doi.org/10.1007/JHEP08(2023)171

Download citation

  • Received: 13 July 2023

  • Accepted: 16 August 2023

  • Published: 25 August 2023

  • Version of record: 25 August 2023

  • DOI: https://doi.org/10.1007/JHEP08(2023)171

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • 2D Gravity
  • AdS-CFT Correspondence
  • Black Holes
  • Quantum Dissipative Systems
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载